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PREFACE 

 

Time-series analysis is used to detect patterns of change in statistical information over regular 

intervals of time. We project these patterns to arrive at an estimate for the future. Thus, time-

series analysis helps us cope with uncertainty about the future. 

This textbook was developed for a one-semester course usually attended by students in first-

year finance management. It focuses on statistical time series modeling, focusing on practical, 

applied aspects. It provides methods for analysing and understanding real-world time series, 

drawing examples from various fields, especially the finance field while avoiding 

overburdening readers with technical details.Each chapter contains applied examples, some of 

which are “developed” over several chapters. 

The first chapter discusses the characteristics of time series, introducing the fundamental 

concepts of time plot, time series components and decomposition forms and the estimate of 

trend and seasonality. The second chapter contains the different methods of exponential 

smoothing such as the simple, double and triple exponential smoothing. Chapter 3 introduces 

stochastic processes and stationarity, underlying all statistical time series models, and develops 

the autoregressive-moving average (ARMA) process, the basic class of univariate time series 

models. Finally, the fourth chapter focusses on dynamic models, which include distributed-lag 

and autoregressive models. 
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1.1 Introduction 

Time series are analysed to understand the past and predict the future, enabling managers or 

policymakers to make informed decisions. A time series analysis quantifies the main features 

in data and the random variation. These reasons, combined with improved computing power, 

have made time series methods widely applicable in government, industry, and commerce. 

 

1.2 Definition 

A time series is a collection of data recorded over some time - weekly, monthly, quarterly, or 

yearly. In general, a time series on some variable Y will be denoted as 𝑦𝑡, where the subscript t 

represents time, with 𝑡 = 1 being the first observation available on Y and 𝑡 = 𝑛 being the last. 

The complete set of times 𝑡 = 1;  2; . . . ;  𝑛 will often be referred to as the observation period. 

The observations are typically measured at equally spaced intervals.  

Examples : 

 Business: sales figures, production numbers, customer frequencies, ... 

 Economics: stock prices, exchange rates, interest rates, ... 

 Official Statistics: census data, personal expenditures, road casualties, ... 

 Natural Sciences: population sizes, sunspot activity, chemical process data, ... 

 Environmetrics: precipitation, temperature or pollution recordings, ... 

It is customary to plot time-series data either as a line graph or as a bar graph, with time on the 

horizontal X-axis and the variable being meseared on the vertical Y-axis to reveal how the 

variable changes over time. In a line graph, the X-Y data points are connected with line segments 

to make it easier to see fluctuations. 

Example (1.1) 

The following table shows the development of projects funded by the National Agency for the 

Support of Youth Employment from 2004 to 2013: 

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Projects 

number 

6691 10549 8645 8102 10634 20848 22641 42832 65812 43039 

We use a line graph to plot the time series data above.  
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1.3 Time Series Components 

There are four components to a time series: the trend, the cyclical variation, the seasonal 

variation and the irregular variation. 

A. Trend (T) 

The Trend is the smooth long-term direction of a time series. Thus trend reflects the long-run 

growth or decline in the time series. Trend movements can represent a variety of factors. For 

example, long-run movements in the sales of a particular industry might be determined by 

changes in consumer tastes, increases in total population, and increases in per capita income. 

B. Cyclical variation (C) 

The cyclical variation is the rise and fall of a time series over periods longer than one year. 

These fluctuations can last from 2 to 10 years or even longer measured from peak to peak or 

trough to trough. One of the common cyclical fluctuations found in time series data is the 

business cycle, which is represented by fluctuations in the time series caused by recurrent 

periods of prosperity and recession 

C. Seasonal variation (S) 

The seasonal variation is the patterns of change in a time series within a year. These patterns 

tend to repeat themselves each year. For example, soft drink sales and hotel room occupancies 

are annually higher in the summer months, while department store sales are annually higher 

during the winter holiday season. Seasonal variations can also last less than one year.  

D. Irregular fluctuations (I) 

The irregular fluctuations are the erratic time series movements that follow no recognizable or 

regular pattern. Such movements represent what is “leftover” in a time series after trend, cycle, 

and seasonal variations have been accounted for. 
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Many analysts prefer to subdivide the irregular variation into episodic and residual variations. 

Episodic fluctuations are unpredictable, but they can be identified. The initialimpact on the 

economy of a major labor strike or a war can be identified, but a strike or war cannot be 

predicted. After the episodic fluctuations have been removed, the Remaining variation is called 

the residual variation. The residual fluctuations, often called chance fluctuations or noise, are 

unpredictable, and they cannot be identified. Of course, neither episodic nor residual variation 

can be projected into the future. 

 

1.4 Time series decomposition forms 

Time-series data, 𝑦𝑡, can be described using the additive or multiplicative forms.  

A. Additive form 

If the components are independent of each other, we can express x(t) as an additive scheme : 

𝒀𝒕 = 𝑻 + 𝑪 + 𝑺 + 𝑰 

Where the time series changes according to this model almost consistently over time.  
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B. Multiplicative form 

If the components are closely linked to each other, x(t) can appear as a multiplicative form : 

𝒀𝒕 = 𝑻 × 𝑪 × 𝑺 × 𝑰 

The time series changes according to this model in a multiplicative manner. 

 

The additive form is attractive for its simplicity, but the multiplicative model is often more 

useful for forecasting financial data, particularly when the data vary over a range of magnitudes. 

Especially in the short run, the form assumed may not matter greatly. The model forms are 

fundamentally equivalent because the multiplicative model becomes additive if logarithms are 

taken (as long as the data are nonnegative): 

log (𝑦𝑡) = log(𝑇 × 𝐶 × 𝑆 × 𝐼) = log (𝑇) + log (𝐶) + log (𝑆) + log (𝐼) 

1.5 Trend analysis 

One way to describe the trend given graph, however, is subject to slightly different 

interpretations by different individuals. We can also fit a trend line by the method of least 

squares (regression method) or moving averages. 

A. Least squares method  

The linear trend model is useful for a time series that grows or declines by the same amount in 

each period, as shown in the figure below. It is the simplest model and may suffice for short-

run forecasting. It is generally preferred in business as a baseline forecasting model unless there 

are compelling reasons to consider a more complex model. 
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The linear trend is determined using the simple least squares technique based on the following 

equation :  

�̂� = �̂� + �̂�𝑡  

where 

�̂� : estimated value of the dependent variable 

 𝑡 : independent variable (time in trend analysis) 

 �̂� : Y-intercept (the value of Y when t = 0) 

 �̂� : slope of the trend line 

The coefficients �̂� and �̂� are calculated as follows: 

�̂� =
∑ (𝑡 − 𝑡̅)(𝑦𝑡 − �̅�)𝑛

𝑡=1

∑ (𝑡 − 𝑡̅)2𝑛
𝑡=1

=
∑ 𝑡𝑖𝑦𝑖 − 𝑛𝑡̅�̅�𝑛

𝑖=1

∑ 𝑡𝑖
2 − 𝑛𝑡̅2𝑛

𝑖=1

 

�̂� = �̅� − �̂�𝑡̅ 

Example (1.2) 

The data presented in the table below represents the evolution of Algerian imports (in billion 

dinars) during the period from 2009 to 2015: 

 

Year 2009 2010 2011 2012 2013 2014 2015 

Imports 3583.8 3768.0 4184.9 4622.1 5061.1 5500.5 6104.0 

 

we estimate the trend equation using the least squares method. 

𝒕𝟐 𝒕𝒚𝒕 𝒚𝒕 𝒕 

1 3583.8 3583.8 1 

4 7536 3768 2 

9 12554.7 4184.9 3 
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16 18488.4 4622.1 4 

25 25305.5 5061.1 5 

36 33003 5500.5 6 

49 42728 6104 7 

140 143199.4 32824.4 28 

𝑡̅ =
28

7
= 4; �̅� =

32824.4

7
= 4689.2 

�̂� =
143199.4 − (7)(4)(4689.2)

140 − (7)(4)2
=

11901.8

28
= 425.06 

�̂� = 4689.2 − (425.06)(4) = 2988.96 

�̂� = 2988.96 + 425.06𝑡 

By substituting the values of t into the equation, we obtain the estimated values of Y, which 

can be represented as follows: 

 

 

We can make a forecast for any future year by using the fitted model  

�̂� = 2988.96 + 425.06𝑡. In the precedent example, the fitted trend equation is based on only 

7 years’ data, so we should be wary of extrapolating very far ahead: 

For 2016 (t=8) : 𝑦8 = 2988.96 + 425.06 (8) = 6389.44 

For 2017 (t=9) : 𝑦9 = 2988.96 + 425.06 (9) = 6814.5 

For 2018 (t=10) : 𝑦10 = 2988.96 + 425.06 (10) = 7239.56 

For 2019 (t=11) : 𝑦11 = 2988.96 + 425.06 (11) = 7664.62 

Note 

There are many other possible trend models, but two of them are especially useful in business: 

- The exponential trend model has the form 𝒚𝒕 = 𝒂𝒆𝒃𝒕. It is useful for a time series that grows 

or declines at the same rate (b) in each period.  

- The quadratic trend model has the form 𝒚𝒕 = 𝒂 + 𝒃𝒕 + 𝒄𝒕𝟐. It is useful for a time series 

that has a turning point or that is not captured by the exponential model. 
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B. Moving averages method  

With this approach, a sequence of moving averages—which are computed as arithmetic 

averages over particular moving and sequential periods—replace the values of the original 

series. Every time, the subsequent year is added and the prior year is removed. 

The moving averages of a time series of size n with order p (where 𝑝 < 𝑛), is calculted as 

follows : 

- In the case of p being odd, this means p=2k+1, then: 

𝑦𝑡 =
1

𝑝
(𝑦𝑡−𝑘 + 𝑦𝑡−𝑘+1 + ⋯ + 𝑦𝑡−1 + 𝑦𝑡 + 𝑦𝑡+1 + ⋯ + 𝑦𝑡+𝑘) 

- In the case of p being even, that is p=2k, then: 

𝑦𝑡 =
1

𝑝
(0.5𝑦𝑡−𝑘 + 𝑦𝑡−𝑘+1 + ⋯ + 𝑦𝑡−1 + 𝑦𝑡 + 𝑦𝑡+1 + ⋯ + 0.5𝑦𝑡+𝑘) 

For example, if we want to calculate the moving averages based on three years, we calculate 

the arithmetic average of the first three years and write it next to the second year (𝑦2 =
1

3
(𝑦1 +

𝑦2 + 𝑦3)), then we drop the first year, add the fourth year, and calculate the average for the 

second, third, and fourth years, writing it next to the third year, and so on. If we want to calculate 

the moving averages based on four years, we calculate the arithmetic average of the first five 

years, taking half the value of the first year and half the value of the fifth year, and we write it 

next to the third year.(𝑦3 =
1

4
(0.5𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 0.5𝑦5)) etc.  

The value of period p is determined by the time series' seasonality. For a seasonal time series, 

a period of p=4 is appropriate for a quarterly series and p=12 for a monthly series.  

This method is criticized for the following reasons:  

- It simply shows trend numbers and does not provide the underlying equation, which is crucial 

for prediction.  

- It loses trend values for several years at the start and end of the series.  

- It requires the end of the term before beginning work, which is an estimate.  

As a result, this method is typically utilized when the trend is non-linear and the goal is to 

analyse the series' movement rather than make forecasts. 

Example (1.3) 

Using example (1.1) data, we compute the three-year and four-year moving averages.  

Year Projects number Moving averages (p=3) Moving averages 

(p=4) 

2008 6691 / / 

2009 10549 8628.33 / 

2010 8645 9098.67 8989.63 

2011 8102 9127 10769.88 

2012 10634 13194.67 13806.75 

2013 20848 18041 19897.5 

2014 22641 28773.67 31136 

2015 42832 43761.67 40807.13 
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2008 65812 50561 / 

2009 43039 / / 

 

The three series are plotted to produce the following graph: 

 

 

1.6 Seasonal analysis 

A. Ratio-to-trend method 

This method provides an index that describes the degree of seasonal variation. The index is 

based on a mean of 100, with the degree of seasonality measured by variations away from the 

base. 

This method can be summarized into the following steps: 

1. The least squares method is used to determine trend values.  

2. Subtract the observed values from the estimated trend values in the additive form, or divide 

the observed values by the estimated trend values in the multiplicative form.  

3. The seasonal index, which is the average of the coefficients for each season of the year, is 

calculated for each season (month, season, etc.);  

4. If the sum of the indexes is less than the period length in the multiplicative form or equal to 

zero in the additive form, the indexes are seasonally adjusted. 

Example (1.4) 

The following table shows the development of a quarterly time series: 

 2018 2019 2020 

1st season 2 2 10 

2nd season 4 6 12 

3 rd saison 14 22 20 

4 th season 18 24 24 

To calculate the seasonal indexes, we first examine the graph depicting the time series to 

determine its form: 
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The time series graph demonstrates two characteristics:  

- It follows an additive form, indicating essentially consistent variations around the trend.  

- The presence of a seasonal (quarterly) component to the trend.  

Now, we calculate the seasonal indexes using the techniques below: 

1- Defining the trend (estimated) values using the least squares method: 

𝒕𝒊
𝟐 𝒕𝒊𝒚𝒊 𝒚𝒊 𝒕𝒊 

1 2 2 1 

4 8 4 2 

9 42 14 3 

16 72 18 4 

25 10 2 5 

36 36 6 6 

49 154 22 7 

64 192 24 8 

81 90 10 9 

100 120 12 10 

121 220 20 11 

144 288 24 12 

650 1234 158 78 

 

𝑡̅ =
78

12
= 6.5,                       �̅� =

158

12
= 13.17 

�̂� =
1234 − (12)(6.5)(13.17)

650 − (12)(6.5)2
= 1.45 

�̂� = 13.17 − (1.45)(6.5) = 3.75 

�̂�𝑡 = 3.75 + 1.45𝑡𝑖 

2. Seasonal coefficients calculation: 

To calculate seasonal coefficients, first calculate the trend values by substituting them into the 

previous equation and subtracting them from the actual time series data, as indicated in the  
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table below.  

 

 

 

 

 

 

 

 

 

3. To calculate the seasonal indexes, we compute the average of each season's values 

throughout the three years, as follows: 

𝐶1 =
−3.20 − 9.00 − 6.80

3
= −6.33 

𝐶2 =
−2.65 − 6.45 − 6.25

3
= −5.12 

𝐶3 =
5.90 + 8.10 + 0.30

3
= 4.77 

𝐶4 =
8.45 + 8.65 + 2.85

3
= 6.65 

4. The four indexes added together yield the following: 

−6.33 − 5.12 + 4.77 + 6.65 = −0.03 

Because the sum is approximately zero, we do not adjust the seasonal indexes. 

B. Ratio-to-moving-average method 

We follow the same steps as the previous method.  

Example (1.5) 

We take the example (1.4) data and construct the seasonal indexes using the ratio to moving 

average approach. The following findings are obtained : 

1. Calculating the trend values : 

Because the series is quarterly, the cycle is four. 

 

 

𝒚𝒊 − �̂�𝒊 𝒚�̂� 𝒚𝒊 𝒕𝒊 

-3.20 5.20 2 1 

-2.65 6.65 4 2 

5.90 8.10 14 3 

8.45 9.55 18 4 

-9.00 11.00 2 5 

-6.45 12.45 6 6 

8.10 13.90 22 7 

8.65 15.35 24 8 

-6.80 16.80 10 9 

-6.25 18.25 12 10 

0.30 19.70 20 11 

2.85 21.15 24 12 
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𝒚�̂� yi ti 

/ 2 1 

/ 4 2 

9.5 14 3 

9.75 18 4 

11 2 5 

12.75 6 6 

14.5 22 7 

16.25 24 8 

16.75 10 9 

16.5 12 10 

/ 20 11 

/ 24 12 

 

2. Calculating seasonal coefficients : 

𝒚𝒊 − �̂�𝒊 𝒚�̂� yi ti 

/ / 2 1 

/ / 4 2 

4.5 9.5 14 3 

8.25 9.75 18 4 

-9 11 2 5 

-6.75 12.75 6 6 

7.5 14.5 22 7 

7.75 16.25 24 8 

-6.75 16.75 10 9 

-4.5 16.5 12 10 

/ / 20 11 

/ / 24 12 

 

3. To compute the seasonal indexes, we take the average of each season's values across three 

years, as follows: 

𝐶1 =
−9 − 6.75

2
= −7.875 

𝐶2 =
−6.75 − 4.5

2
= −5.625 

𝐶3 =
4.50 + 7.50

2
= 6.00 

𝐶4 =
8.25 + 7.75

2
= 8.00 

The four indexes added together to yield the following: 

−7.875 − 5.625 + 6.00 + 8.00 = 0.5 
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Because the sum does not equal zero, we correct the seasonal indexes using the following 

relationship: 

𝜌 =
1

4
∑ 𝐶𝑖

4

𝑖=1

=
0.5

4
= 0.125 

we obtain the seasonally adjusted factors as follows: 

𝐶𝑖
′ = 𝐶𝑖 − 𝜌 

That means: 

𝐶1
′ = −7.875 − 0.125 = −8.00 

𝐶2
′ = −5.625— 0.125 = −5.75 

𝐶3
′ = 6.00— 0.125 = 5.875 

𝐶3
′ = 8.00— 0.125 = 7.875 

1.7 Deseasonalising a time series 

Seasonal indexes are used to remove the effects of seasonality from a time series. This is called 

deseasonalising a time series. To find the trend component of a time series, we must first reduce 

seasonal fluctuation. To deseasonalise a time series, we divide each actual value by the 

corresponding seasonal index in the multiplicative form or substruct the corredponding index 

from each actual value in the additive form. The deseasonalized series is useful for gaining clear 

developments in the time series, as seasonal fluctuations often hide the main trend, such as 

the unemployment series, which sometimes gives the impression of an increase or decrease in 

unemployment when they are only seasonal jobs. 

Example (1.6)  

Referring back to the data from example (1.4), we calculate the values of the deseasonalised 

time series by subtracting the seasonal indexes from the original values of the series. We 

obtain the following table: 

 2018 2019 2020 

1st season 8.33 8.33 16.33 

2nd season 9.12 11.12 17.12 

3 rd saison 9.23 17.23 15.23 

4 th season 11.35 17.35 17.35 

 

By plotting the original series and the deseasonalised series, we obtain the following graph: 
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1.8 Forecasting  

The trend values are predicted and multiplied by the seasonal indexes (in the case of the 

multiplicative model) or added to them (in the case of the additive model). 

Example (1.7) 

We use the data from example (1.4) to predict the time series values for the year 2021. 

1. We calculate the trend values by substituting the four seasonal periods of 2021 into the trend 

equation. We obtain the following results: 

�̂�13 = 3.75 + 1.45(13) = 22.60 

�̂�14 = 3.75 + 1.45(14) = 24.05 

�̂�15 = 3.75 + 1.45(15) = 25.50 

�̂�16 = 3.75 + 1.45(16) = 26.95 

2. We calculate the time series values for the four seasons of 2021 by adding the trend values 

to the seasonal indexes as follows: 

First season: 22.60 − 6.33 = 16.27 

Second season: 24.05 − 5.12 = 18.93 

Third season: 25.50 + 4.77 = 30.27 

Fourth season: 26.95ا + 6.65 = 33.60 
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Exercise series no 01 

 

Exercise 01: 

Data in the table below represent the evolution of Algerian GDP (in million DZ dinars) during 

the period 2008-2015. 

Year 2008 2009 2010 2011 2012 2013 2014 2015 

GDP 11043.7 9968.0 11991.6 14588.5 16208.7 16650.2 17242.5 16591.9 

Estimate the trend using : 

1. Linear regression method. 

2. Moving averages method with p=3 and p=4. 

Exercise 02: 

Data in the table below represent the evolution of seasonal sales of shoes in a shop during 

three years. 

 2015 2016 2017 

1st season 201 220 245 

2nd season 195 210 225 

3 rd season 185 190 200 

4 th season 210 230 250 

1. Calculate the seasonal indexes using the two methods, ratio to trend and ratio to moving 

averages.  

2. Deseasonalise the time series. 

3. forecast the seasonal sales of shoes in 2018. 
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2.1 Introduction 

Smoothing techniques are often used to forecast future values of a time series. They are a family 

of forecasting models that use weighted averages of past observations to forecast new values. 

The idea is to give more importance to recent values in the series. Thus, as observations age, 

the importance of these values gets exponentially smaller. 

2.2 Simple Moving Average Method 

The moving averages method uses N of the most recent data values in the time series to 

forecast the upcoming period. It can be expressed in the following form: 

𝐹𝑡+1 =
𝑦𝑡 + 𝑦𝑡−1 + ⋯ + 𝑦𝑡−𝑛+1

𝑁
=

∑ 𝑦𝑡
𝑡−𝑁+1
𝑖=𝑡

𝑁
 

Where 

𝐹𝑡+1 : the forecast for the next period 

𝑦𝑡  : the actual data value in period 𝑡 

Example (2.1)  

The table below represents data of milk sales (in thousands of liters) over 12 weeks:  

Week 1 2 3 4 5 6 7 8 9 10 11 12 

Sales 17 21 19 23 18 16 20 18 22 20 15 22 

Use the simple moving averages method to forecast milk sales values for three weeks.  

Solution 

𝑭𝒕+𝟏 𝒚𝒕 t 

/ 17 1 

/ 21 2 

/ 19 3 

19 23 4 

21 18 5 

20 16 6 

19 20 7 

18 18 8 

18 22 9 

20 20 10 

20 15 11 

19 22 12 

For example : 

𝐹4 =
𝑦3 + 𝑦2 + 𝑦1

3
=

19 + 21 + 17

3
= 19 

𝐹5 =
𝑦4 + 𝑦3 + 𝑦2

3
=

23 + 19 + 21

3
= 21 

Among the disadvantages of this method is that it assigns the same weights to the values used 

in calculating the moving average, whereas, it is appropriate that more recent values are more 
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important and have greater predictive power. It requires a large number of historical values, and 

the moving average calculation does not take into account the other values that are not included 

in its calculation. Additionally, an inappropriate choice of the moving average period can lead 

to many forecasting errors, especially in the case of seasonal variations. 

2.3 Weighted Moving Averages Method  

This method assigns different weights to the N observed values, giving greater weight to the 

recent values, according to the following relationship:  

𝐹𝑡+1 = 𝑘0𝑦𝑡 + 𝑘1𝑦𝑡−1 + ⋯ + 𝑘𝑁−1𝑦𝑡−𝑁+1 = ∑ 𝑘𝑖𝑦𝑡−𝑖

𝑁−1

𝑖=0
 

Where 

𝑘0, 𝑘1, … , 𝑘𝑁−1 : weighting coefficients where it is required that: ∑ 𝑘𝑖
𝑁−1
𝑖=1 = 1 

Example (2.2)  

In the example (2.1), assuming that the weighting factors are: 0.50, 0.30 and 0.20 from the 

most recent to the oldest. Use the weighted moving averages method to forecast future values 

of milk sales.  

Solution  

𝑭𝒕+𝟏 𝒚𝒕 t 

/ 17 1 

/ 21 2 

/ 19 3 

19.2 23 4 

21.4 18 5 

19.7 16 6 

18.4 20 7 

18.2 18 8 

20.4 22 9 

20.2 20 10 

17.9 15 11 

19.5 22 12 

 

For example : 

𝐹4 = 𝑘0𝑦3 + 𝑘1𝑦2 + 𝑘2𝑦1 = (0.50)(19) + (0.30)(21) + (0.20)(17) = 19.2 

𝐹5 = 𝑘0𝑦4 + 𝑘1𝑦3 + 𝑘2𝑦2 = (0.50)(23) + (0.30)(19) + (0.20)(21) = 21.4 

Weights are usually chosen through trial and error, while in the case of seasonality, for example, 

it is taken into consideration. For example, in the case of air conditioning unit sales, the weight 

of sales in May of the previous year is greater than the weight of sales in December. Despite 

the superiority of the weighted moving averages method over the simple moving averages 

method, exponential smoothing methods are preferred. 
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2.4 Simple Exponential Smoothing Method  

It is a special case of the weighted moving averages method, where only one weight, the most 

recent observation weight, is chosen. As for the weights of other data values, they are 

calculated automatically and become smaller as you go back in the past. Its formula is given 

as follows: 

𝐹𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼)𝐹𝑡 

Where 

𝐹𝑡+1 : the forecast for the period 𝑡 + 1 

𝐹𝑡 : the forecast for the period 𝑡 

𝑦𝑡  : the actual data value in period 𝑡 

𝛼 : smoothing constant (0 ≤ 𝛼 ≤ 1) 

Example (2.3)  

Returning to example (1.3), assuming α=0.2, calculate the predicted values for milk sales 

using the simple exponential smoothing method.  

The solution  

Since there are no previous values for the first value, we start calculating the forecasts from 

the second value. 

𝐹2 = 𝛼𝑦1 + (1 − 𝛼)𝐹1 = (0.2)(17) + (0.8)(17) = 17 

𝐹3 = 𝛼𝑦2 + (1 − 𝛼)𝐹2 = (0.2)(21) + (0.8)(17) = 17.80 

And so on until all the values are completed and we obtain the following table: 

𝑭𝒕+𝟏 𝒚𝒕 t 

/ 17 1 

17 21 2 

17.80 19 3 

18.04 23 4 

19.03 18 5 

18.83 16 6 

18.26 20 7 

18.61 18 8 

18.49 22 9 

19.19 20 10 

19.35 15 11 

18.48 22 12 

 

 

 

 

Even though simple exponential smoothing is a weighted average of all past observations, 

there is no need to store them all to calculate the forecast for the next period, i.e by choosing a 
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smoothing constant 𝛼, we can calculate the forecast for the period 𝑡 + 1 by knowing only two 

values: the actual and forecasted values of the time series for the period 𝑡, namely 𝑦𝑡 and 𝐹𝑡. 

Simple exponential smoothing requires a small amount of data, making it a cost-effective and 

useful method for companies that make frequent forecasts.  

To choose the initial value α, the following criteria can be relied upon:  

- For small fluctuations in time series data, a small smoothing constant is used, while for large 

fluctuations, a large smoothing constant is used.  

- A big smoothing constant is used when the latest data is prioritised, while a small smoothing 

constant is used when the current data is prioritised over the past data. 

- In practice, the smoothing constant is determined through trial and error.  

 

2.5 Double Exponential Smoothing Method (Holt's Method)  

The prior method is suitable for forecasting stationary time series with no trend. For a time 

series with a trend (𝑦𝑡 = 𝑎𝑡 + 𝑏𝑡𝑡), the double exponential smoothing method is used, where 

double smoothing is applied at both the time series and trend levels, relying on the following 

formulas:  

𝑆𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑆𝑡−1 

𝑆𝑆𝑡 = 𝛼𝑆𝑡 + (1 − 𝛼)𝑆𝑆𝑡−1 

𝑎𝑡 = 2𝑆𝑡 − 𝑆𝑆𝑡 

𝑏𝑡 =
𝛼

1 − 𝛼
(𝑆𝑡 − 𝑆𝑆𝑡) 

The temporal horizon h is predicted by the following equation: 

𝐹𝑡+ℎ = 𝑎𝑡 + 𝑏𝑡ℎ 

Example (2.4)  

Use the double exponential smoothing method to forecast the time series below, assuming 

that: α=0.2.  

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Value 59 61 62 63 65 66 67 72 77 87 

The solution  

Before starting the forecast calculations, we plot the time series.  
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A clear trend is evident, justifying the use of the double exponential smoothing method for 

forecasting its values. 

We have : 

𝑆1 = 𝑆𝑆1 = 𝑦1 = 59 

So : 

𝑎1 = 2𝑦1 − 𝑦1 = 𝑦1 = 59 

𝑏1 =
0.2

0.8
(𝑦1 − 𝑦1) = 0 

By setting h=1, we get the predicted value for the year 2001 as follows: 

𝐹2 = 𝑎1 + 𝑏1(1) = 59 + (0)(1) = 59 

And 

𝑆2 = 𝛼𝑦2 + (1 − 𝛼)𝑆1 = (0.2)(61) + (0.8)(59) = 59.4 

𝑆𝑆2 = 𝛼𝑆2 + (1 − 𝛼)𝑆𝑆1 = (0.2)(59.4) + (0.8)(59) = 59.08 

𝑎2 = 2𝑆2 − 𝑆𝑆2 = 2(59.4) − 59.08 = 59.72 

𝑏2 =
𝛼

1 − 𝛼
(𝑆2 − 𝑆𝑆2) =

0.2

0.8
(59.4 − 59.08) = 0.08 

𝐹3 = 𝑎2 + 𝑏2(1) = 59.72 + 0.08(1) = 59.8 

We continue in the same way until all the values shown in the table below are calculated. 

t 𝒚𝒕 𝑺𝒕 𝑺𝑺𝒕 𝒂𝒕 𝒃𝒕 𝑭𝒕+𝒉  (𝒉 = 𝟏) 

1 59 59 59 59 0 / 

2 61 59.4 59.08 59.72 0.08 59 

3 62 59.92 59.25 60.59 0.17 59.8 

4 63 60.54 59.51 61.57 0.26 60.76 

5 65 61.43 59.89 62.97 0.39 61.83 

6 66 62.34 60.38 64.30 0.49 63.36 

7 67 63.27 60.96 65.58 0.58 64.79 

8 72 65.02 61.77 68.27 0.81 66.16 

9 77 67.42 62.90 71.94 1.13 69.08 

10 82 70.34 64.39 76.29 1.49 73.07 

 

2.6 Triple Exponential Smoothing Method (Holt-Winters)  

It is used to predict the values of time series with a trend and seasonal variation. It takes two 

forms (the additive form and the multiplicative form) depending on the pattern of the time 

series variations:  

A. The multiplicative form 

- Average smoothing : 
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𝑆𝑡 = 𝛼
𝑦𝑡

𝐼𝑡−𝑝
+ (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1) 

- Trend smoothing : 

𝑏𝑡 = 𝛽(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

- Seasonal smoothing : 

𝐼𝑡 = 𝛾
𝑦𝑡

𝑆𝑡
+ (1 − 𝛾)𝐼𝑡−𝑝 

Where P is the seasonal period (p=12 in the case of a monthly series and p=4 in the case of a 

quarterly series).  

To calculate the forecast values, we use the following two equations: 

𝐹𝑡+ℎ = (𝑆𝑡 + ℎ𝑏𝑡)𝐼𝑡−𝑝+ℎ    ;      1 ≤ ℎ ≤ 𝑝 

𝐹𝑡+ℎ = (𝑆𝑡 + ℎ𝑏𝑡)𝐼𝑡−𝑝+2ℎ    ;      𝑝 + 1 ≤ ℎ ≤ 2𝑝 

A. The additive form 

- Average smoothing : 

𝑆𝑡 = 𝛼(𝑦𝑡 − 𝐼𝑡−𝑝) + (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1) 

- Trend smoothing : 

𝑏𝑡 = 𝛽(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

- Seasonal smoothing : 

𝐼𝑡 = 𝛾(𝑦𝑡 − 𝑆𝑡) + (1 − 𝛾)𝐼𝑡−𝑝 

To calculate the forecast values, we use the following two equations: 

𝐹𝑡+ℎ = 𝑆𝑡 + ℎ𝑏𝑡 + 𝐼𝑡−𝑝+ℎ    ;      1 ≤ ℎ ≤ 𝑝 

𝐹𝑡+ℎ = 𝑆𝑡 + ℎ𝑏𝑡 + 𝐼𝑡−𝑝+2ℎ    ;      𝑝 + 1 ≤ ℎ ≤ 2𝑝 

The initial values for the first year are as follows:  

- Regarding the seasonality, the seasonal factors for the first year are calculated by dividing 

the observed values at time t, i.e., 𝑦𝑡, by the average Y̅ of the first p observations (of the first 

year) in the case of the multiplicative form and by subtracting the average in the case of the 

additive form. 

𝐼𝑡 =
𝑦𝑡

�̅�
  𝑜𝑟   𝐼𝑡 = 𝑦𝑡 − �̅�    ;      �̅� =

∑ 𝑦𝑡
𝑝
𝑡=1

𝑝
         ;   𝑡 = 1, … , 𝑝 

- Regarding the average : 

𝑆𝑝 = �̅� 

- Regarding the trend : 

𝑏𝑝 = 0 
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Example (2.5)  

Let the following time series data be: 

 2014 2015 2016 

Season 1 362 382 473 

Season 1 385 409 513 

Season 1 432 498 582 

Season 1 341 387 474 

 

Assuming 𝛼 = 0.2, 𝛽 = 0.1, and 𝛾 = 0.05, calculate the forecasts using the triple exponential 

smoothing method.  

The solution  

First, we plot the time series to check for seasonality and to determine whether it follows an 

additive or multiplicative form. 

 

It is clear from the graph that there is seasonality and that the appropriate form is the additive 

form.  

To calculate the predictive values, we first calculate the initial values as follows:  

- Seasonality:  

We have:  

�̅� =
∑ 𝑦𝑡

𝑝
𝑡=1

𝑝
=

∑ 𝑦𝑡
4
𝑡=1

4
=

362 + 385 + 432 + 341

4
= 380 

So : 

𝐼1 = 362 − 380 = −18           ;           𝐼2 = 385 − 380 = 5   

 𝐼3 = 432 − 380 = 52            ;            𝐼4 = 341 − 380 = −39 

- Average : 

𝑆𝑃 = 𝑆4 = �̅� = 380 

- Trend : 

𝑏𝑃 = 𝑏4 = 0 
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𝑆5 = 𝛼(𝑦5 − 𝐼1) + (1 − 𝛼)(𝑆4 + 𝑏4) = 0.2(382 − (−18)) + (0.8)(380 + 0) = 384 

𝑏5 = 𝛽(𝑆5 − 𝑆4) + (1 − 𝛽)𝑏4 = 0.1(384 − 380) + (0.9)(0) = 0.4 

𝐼5 = 𝛾(𝑦5 − 𝑆5) + (1 − 𝛾)𝐼1 = 0.05(382 − 384) + (0.95)(−18) = −17.2 

𝑆6 = 𝛼(𝑦6 − 𝐼2) + (1 − 𝛼)(𝑆5 + 𝑏5) = 0.2(409 − 5) + (0.8)(384 + 0.4) = 388.32 

𝑏6 = 𝛽(𝑆6 − 𝑆5) + (1 − 𝛽)𝑏5 = 0.1(388.32 − 384) + (0.9)(0.4) = 0.79 

𝐼6 = 𝛾(𝑦6 − 𝑆6) + (1 − 𝛾)𝐼2 = 0.05(409 − 388.32) + (0.95)(5) = 5.78 

𝐹6 = 𝑆5 + ℎ𝑏5 + 𝐼2 = 384 + (1)(0.4) + 5 = 389.4 

We continue in the same way until all the values shown in the table below are calculated. 

t 𝒚𝒕 𝑺𝒕 𝒃𝒕 𝑰𝒕 𝑭𝒕+𝒉 (𝒉
= 𝟏) 

1 362   -18 / 

2 385   5 / 

3 432   52 / 

4 341 380 0 -39 / 

5 382 384 0.4 -17.2 / 

6 409 388.32 0.79 5.78 389.4 

7 498 400.49 1.93 54.28 441.11 

8 387 407.14 2.40 -38.06 363.42 

9 473 425.67 4.01 -13.97 392.34 

10 513 445.19 5.56 8.88 435.46 

11 582 465.82 7.07 54.80 505.03 

12 474 480.72 7.85 -36.49 434.83 
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Exercise series n° 2 

Exercise 1:  

The data below represent the monthly closing prices of a certain stock during the period from 

December 1996 to November 1997:  

Month Price 

December 1996 40 

January 1997 38 

February 1997 39 

March 1997 41 

April 1997 36 

May 1997 41 

June 1997 34 

July 1997 37 

August 1997 35 

September 1997 37 

October 1997 40 

November 1997 41 

 

1. Use the simple moving average method (3-month period) to predict the closing price.  

2. Use the weighted moving averages method (3-month period) to predict the closing price, 

assuming the weighting factors are: 0.4, 0.4, 0.2 from the most recent to the oldest.  

3. Forecast the closing price using the simple exponential smoothing method, assuming the 

smoothing constant is 0.3.  

 

Exercise 2:   

Let the following time series:  

Year 2017 2018 2019 2020 2021 2022 

Values 143 152 161 165 170 174 

 

Assuming that the smoothing constant is α=0.3, calculate the forecasts using the double 

exponential smoothing method.  
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Exercise 3:  

The data below represent the sales of a certain product during the period from January 2020 to 

December 2021. 

 2020 2021 

January 401.60 263.90 

February 395.70 289.90 

March 451.00 337.00 

April 427.60 374.00 

May 496.80 292.70 

June 467.70 398.60 

July 352.30 421.70 

August 182.10 173.80 

September 522.20 522.10 

October 687.20 642.40 

November 1080.30 984.20 

December 1996 1391.60 1307.60 

 

Assuming 𝛼 = 0.3, 𝛽 = 0.1, and 𝛾 = 0.2, calculate the forecasts using the triple exponential 

smoothing method.  
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3.1 Introduction 

In the late 20th century, scholars Box and Jenkins introduced a scientific methodology for 

studying time series, focusing on the random nature of observed data rather than fitting 

mathematical functions. This methodology assumes the existence of a stochastic process 

capable of generating or creating an infinite number of time series of a certain length n, and that 

the available or observed series, sometimes referred to as a sample, is only one of these series. 

This observed series is studied to understand the nature and characteristics of the stochastic 

process and the theory that produced this series. 

In this chapter, we will study the univariate ARMA processes, which provide a very useful class 

of models for describing the dynamics of an individual time series. The ARIMA class of models 

is an important forecasting tool, and is the basis of many fundamental ideas in time-series 

analysis. 

 

3.2 Stationarity 

Stationarity of time series (process) means that its statistical properties remain constant over 

time. The statistical properties of the time series can be described definitively and completely 

through the cumulative probability function (distribution function). They can be partially 

described through some important indicators, the most important of which are the expectation 

(mean), variance and covariance.  

A time series (𝑦𝑡) is stationary if the following conditions are met:  

1. The expectation or mean of the time series (𝜇𝑡) does not depend on time t (there is no trend):  

 𝜇𝑡 = E(𝑦𝑡) = 𝜇     ,     ∀𝑡 

2. The variance of the time series (𝜎𝑡
2) does not depend on time t: 

𝜎𝑡
2 = 𝑉(𝑦𝑡) = 𝐸(𝑦𝑡 − 𝜇)

2 = 𝜎2 = 𝛾0 

3. The Covariance between any two variables depends only on the time lag that separates 

them: 

𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡+𝑘) = 𝐸(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇) = 𝛾𝑘 

There are two types of stationarity, strict stationarity and weak stationarity. A process is said to 

be strictly stationary if, for any values of (𝑡1, 𝑡2, … , 𝑡𝑛), the joint distribution of 

(𝑦𝑡1+𝑘, 𝑦𝑡2+𝑘, … , 𝑦𝑡𝑛+𝑘) depends only on the intervals separating the dates k. Notice that if a 

process is strictly stationary with finite second moments, then it must be weakly stationary. 

However, it is possible to imagine a weakly stationary process but not strictly stationary; the 

mean, variance and autocovariance could not be functions of time, but perhaps higher moments 

such as 𝐸(𝑦𝑡
3) are. In this text the term "stationary" by itself is taken to mean weak stationary. 

A significant example of a stationary process is the so-called white noise process (𝜀𝑡). We call 

a stochastic process white noise if it has zero mean, constant, variance  𝜎2 and is serially 

uncorrelated. In other words it is defined as a sequence of independent, identically distributed 

random variables (𝜀𝑡~𝐼𝐼𝐷(0, 𝜎
2). When 𝜀𝑡 is independently and identically distributed as a 

normal distribution with zero mean and constant variance is called a Gaussian white noise 

process (𝜀𝑡~𝑁𝐼𝐷(0, 𝜎
2). 
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As for the nonstationary process, the classic example is the random walk model. We 

distinguish two types of random walks :  

random walk without drift  

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡 

Wher 𝜀𝑡 is a white noise. 

random walk with drift 

𝑦𝑡 = 𝛿 + 𝑦𝑡−1 + 𝜀𝑡 

Where 𝜀𝑡 is a white noise and 𝛿 is a constant. 

3.3 Autocorrelation Function  
The autocorrelation function (ACF) at lag k is defined as follows: 

𝜌𝑘 =
𝐸[(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)]

𝐸(𝑦𝑡 − 𝜇)2
=
𝛾𝑘
𝛾0
       ,     𝑘 = 0,±1,±2,…. 

Where  

𝛾0: The time series variance.  

𝛾𝑘: The covariance at lag k for the same time series.  

The autocorrelation function has multiple forms; sometimes, it decreases and approaches zero 

slowly, and sometimes, it approaches zero quickly in the form of an exponential function. It 

can also take a shape that resembles a sine function in the form of oscillations. The 

autocorrelation function helps us test the stationarity or identify an appropriate model for a 

given time series. 

The autocorrelation function has the following properties: 

1. 𝜌0 = 1 

2. 𝜌−𝑘 = 𝜌𝑘 

3. |𝜌𝑘| ≤ 1 

The autocorrelation function from the sample is calculated as follows:  

𝑟𝑘 = �̂�𝑘 =
𝛾𝑘
𝛾0
= 
∑ [(𝑦𝑡 − �̅�)(𝑦𝑡+𝑘 − �̅�)]
𝑛−𝑘
𝑡=1

∑ (𝑦𝑡 − �̅�)2
𝑛
𝑡=1

      

Where n is the sample size and �̅� is the sample mean. 

The graph of (𝑟𝑘) against k is called the sample autocorrelation function or the correlogram. 

It is an important tool in assessing the behaviour and properties of a time series. It is typically 

plotted for the original series and also after differencing or transforming the data as necessary 

to make the series look stationary and approximately normally 

The choice of lag length is an empirical question. A rule of thumb is to compute ACF up to 

one-third (
1

3
) to one-quarter (

1

4
). 

When we study the autocorrelation function of a time series, the question that arises is which 

terms (�̂�𝑘) are significantly different from zero. If the time series is stationary, the sample 
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autocorrelation coefficients �̂�𝑘 often have a normal distribution with a mean of zero, and a 

variance of (
1

𝑛
) or a standard deviation of (

1

√𝑛
) . That is ;  

�̂�𝑘~𝑁 (0;
1

√𝑛
) 

Therefore, the confidence interval at a 95% level for the coefficient 𝜌𝑘 can be calculated as 

follows: 

𝜌𝑘 = �̂�𝑘 ± 1.96
1

√𝑛
 

This means that if the confidence interval includes the value zero, we do not accept the null 

hypothesis 𝐻0: 𝜌𝑘 = 0. However, if the previous confidence interval does not include the 

value zero, we reject the null hypothesis 𝐻0: 𝜌𝑘 = 0. We can reach the same previous result 

by testing the significance of the autocorrelation coefficient as follows : 

𝐻0: 𝜌𝑘 = 0 

𝐻1: 𝜌𝑘 ≠ 0 

And using the test 𝑍𝑐𝑎𝑙 =
�̂�𝑘
1

√𝑛

 , then comparing the previous result with the value ±𝑍𝛼
2
=

(±1.96) in the case of using a significance level of 0.05. 

Instead of testing the statistical significance of any individual autocorrelation coefficient, we 

can test the joint hypothesis that all the 𝜌𝑘 up to certain lags are simultaneously equal to zero. 

This can be done by two tests, the first is the Box-Pierce test, known as the Q test, which uses 

the following statistic: 

𝑄 = 𝑛∑ �̂�𝑘
2

𝑚

𝑘=1
 

Where n is the sample size and m is the lag length.  

For large samples, Q follows the distribution of 𝜒2 with m degrees of freedom. Accordingly, if 

the value of Q exceeds 𝜒𝑚,𝛼
2  we reject the null hypothesis that all autocorrelation coefficients 

𝜌𝑘 equal to zero, which means that there is at least one value of the autocorrelation coefficients 

that is different from zero, and thus the time series is not stationary. However, if the value of Q 

is less than or equal to 𝜒𝑚,𝛼
2  we accept the null hypothesis that all autocorrelation coefficients 

are equal to zero. This means that the time series is stationary. 

A related (and more accurate) test is the Ljung-Box test, based on : 

𝐿𝐵 = 𝑛(𝑛 + 2)∑ (
�̂�𝑘
2

𝑛 − 𝑘
)

𝑚

𝑘=1
 

It follows a distribution of 𝜒𝑚
2 , and it gives better results than the Q test in the case of small-

sized samples. It is also suitable for large-sized samples. 

Time series that show no autocorrelation are called white noise. 

Example (3.1)  
The time series below represents the percentage of product units sold annually in a 

supermarket : 

Year 2002 2003 2004 2005 2006 2007 2008 2009 

Number of units sold 1 3 2 4 3 2 3 2 
 

1. Compute the first three terms of the ACF (𝑟1, 𝑟2 and 𝑟3) and plot them. 

2. Provide a 95% confidence interval for 𝜌1, 𝜌2 and 𝜌3 and test the significance of 𝑟1, 𝑟2 and 𝑟3.  

3. Compute the Ljung-Box statistic for autocorrelation coefficients. Is the time series 𝑦𝑡 
stationary? 
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Solution 

1. Computing the autocorrelation coefficients and plotting the estimated autocorrelation 

function : 

 

�̅� =
∑ 𝑦𝑡
𝑛
𝑡=1

𝑛
=
20

8
= 2.5 

∑ (𝑦𝑡 − �̅�)
2

𝑛

𝑡=1

= (1 − 2.5)2 + (3 − 2.5)2 + (2 − 2.5)2 + (4 − 2.5)2 + (3 − 2.5)2

+ (2 − 2.5)2 + (3 − 2.5)2 + (2 − 2.5)2

= 2.25 + 0.25 + 0.25 + 2.25 + 0.25 + 0.25 + 0.25 + 0.25 = 6 

𝑟1 =
∑ [(𝑦𝑡 − �̅�)(𝑦𝑡+𝑘 − �̅�)]
8−1
𝑡=1

∑ (𝑦𝑡 − �̅�)2
8
𝑡=1

=
∑ [(𝑦𝑡 − �̅�)(𝑦𝑡+𝑘 − �̅�)]
7
𝑡=1

6

=
1

6
[(𝑦1 − �̅�)(𝑦2 − �̅�) + (𝑦2 − �̅�)(𝑦3 − �̅�) + (𝑦3 − �̅�)(𝑦4 − �̅�)

+ (𝑦4 − �̅�)(𝑦5 − �̅�) + (𝑦5 − �̅�)(𝑦6 − �̅�) + (𝑦6 − �̅�)(𝑦7 − �̅�)

+ (𝑦7 − �̅�)(𝑦8 − �̅�)]

=
1

6
[(1 − 2.5)(3 − 2.5) + (3 − 2.5)(2 − 2.5) + (2 − 2.5)(4 − 2.5)

+ (4 − 2.5)(3 − 2.5) + (3 − 2.5)(2 − 2.5) + (2 − 2.5)(3 − 2.5)

+ (3 − 2.5)(2 − 2.5)] = −1.75 6⁄ = −0.292 

𝑟2 =
∑ [(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)]
8−2
𝑡=1

∑ (𝑦𝑡 − 𝜇)2
8
𝑡=1

=
∑ [(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)]
6
𝑡=1

6

=
1

6
[(𝑦1 − �̅�)(𝑦3 − �̅�) + (𝑦2 − �̅�)(𝑦4 − �̅�) + (𝑦3 − �̅�)(𝑦5 − �̅�)

+ (𝑦4 − �̅�)(𝑦6 − �̅�) + (𝑦5 − �̅�)(𝑦7 − �̅�) + (𝑦6 − �̅�)(𝑦8 − �̅�)]

=
1

6
[(1 − 2.5)(2 − 2.5) + (3 − 2.5)(4 − 2.5) + (2 − 2.5)(3 − 2.5)

+ (4 − 2.5)(2 − 2.5) + (3 − 2.5)(3 − 2.5) + (2 − 2.5)(2 − 2.5)] = 1 6⁄

= 0.167 

𝑟3 =
∑ [(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)]
8−3
𝑡=1

∑ (𝑦𝑡 − 𝜇)2
10
𝑡=1

=
∑ [(𝑦𝑡 − 𝜇)(𝑦𝑡+𝑘 − 𝜇)]
5
𝑡=1

6

=
1

6
[(𝑦1 − �̅�)(𝑦4 − �̅�) + (𝑦2 − �̅�)(𝑦5 − �̅�) + (𝑦3 − �̅�)(𝑦6 − �̅�)

+ (𝑦4 − �̅�)(𝑦7 − �̅�) + (𝑦5 − �̅�)(𝑦8 − �̅�)] =

=
1

6
[(1 − 2.5)(4 − 2.5) + (3 − 2.5)(3 − 2.5) + (2 − 2.5)(2 − 2.5)

+ (4 − 2.5)(3 − 2.5) + (3 − 2.5)(2 − 2.5)] = −1.25 6⁄ = −0.208 
By plotting these values, we obtain the correlogram: 
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2. Confidence interval and significance testing 

Since we have 8 observations, the variance is 1 8⁄ = 0.125 and the standard error is 

√0.125 = 0.354. So the 95 percent confidence interval for any 𝜌𝑘 is : 

𝜌𝑘 = �̂�𝑘 ± 1.96(0.354) = �̂�𝑘 ± 0.694 

In other words, 

�̂�𝑘 − 0.694 ≤ 𝜌𝑘 ≤ �̂�𝑘 + 0.694 

Applying this to 𝜌1, 𝜌2 and 𝜌3, we obtain the following interval confidence : 

For k=1 : [−0.986; 0.402] 

For k=2 : [−0.527; 0.861] 

For k=3 : [−0.902; 0.486] 

We can verify that the 95 percent interval confidence for the three coefficients includes the 

value of zero. So the values 𝜌1, 𝜌2 and 𝜌3 are significantly equal to zero. 

3. Computing the Ljung-Box statistic : 

𝐿𝐵 = 𝑛(𝑛 + 2)∑ (
�̂�𝑘
2

𝑛 − 𝑘
) =

3

𝑘=1
8(8 + 2) [(

0.085

8 − 1
) + (

0.028

8 − 2
) + (

0.043

8 − 3
)] = 2.08 

This statistic is to be compared to the tabulated chi-square with three degrees of freedom 

(2.08 < 𝜒0.05;3
2 = 7.81). In this case, we accept the null hypothesis 𝐻0 that all autocorrelation 

coefficients 𝜌𝑘 equal to zero.  

So the series 𝑦𝑡 is stationary. 

 

3. 4 Partial Autocorrelation Function  

The partial autocorrelation function  (PACF) measures the amount of correlation between 𝑦𝑡 

and 𝑦𝑡+𝑘 after removing the effect of the correlation resulting from the variables 
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𝑦𝑡+1, 𝑦𝑡+2, … , 𝑦𝑡+𝑘−1 that lie between them. It is denoted at lag k by the symbol 𝜑𝑘𝑘 .  

The partial autocorrelation function is given by the following relation:  

𝜑𝑘𝑘 =

{
 
 
 
 

 
 
 
 
1                                    ;                                  𝑘 = 0
𝜌1                                     ;                                𝑘 = 1

|

1     𝜌1      ⋯     𝜌𝑘−2      𝜌1
 𝜌1     1      ⋯     𝜌𝑘−3     𝜌2
⋮        ⋮          ⋱          ⋮         ⋮
𝜌𝑘−1   𝜌𝑘−2      ⋯     𝜌1     𝜌𝑘

|

|

1     𝜌1      ⋯     𝜌𝑘−2    𝜌𝑘−1
 𝜌1     1      ⋯     𝜌𝑘−3    𝜌𝑘−2
⋮        ⋮          ⋱          ⋮         ⋮
𝜌𝑘−1   𝜌𝑘−2      ⋯     𝜌1     1

|

     ;     𝑘 = 2, 3, … 
 

It is calculated recursively as follows: 

By definition                                              𝜑00 = 1       

𝜑11 = 𝜌1 

𝜑𝑘𝑘 =
𝜌𝑘 − ∑ 𝜑𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝜑𝑘−1,𝑗𝜌𝑗
𝑘−1
𝑗=1

       ;          𝑘 = 2, 3, … 

Where  

𝜑𝑘𝑗 = 𝜑𝑘−1,𝑗 − 𝜑𝑘𝑘𝜑𝑘−1,𝑘−1     ;             𝑗 = 1, 2, … , 𝑘 − 1 

For example 

𝜑22 =
𝜌2 − 𝜑11𝜌1
1 − 𝜑11𝜌1

=
𝜌2 − 𝜌1

2

1 − 𝜌1
2  

The partial autocorrelation function takes forms similar to those of the autocorrelation function; 

sometimes it fades slowly, sometimes it gradually approaches zero in the form of waves 

resembling a sine function or in the form of a combination of exponential functions, and 

sometimes it completely cuts off after a certain number of time gaps. It is used to identify the 

stationarity and an appropriate model for a given time series. 

The partial autocorrelation function has the following properties: 

1. The value of the partial autocorrelation coefficient at a zero time lag equals 1, which 

means: 𝜑00 = 1 for any stationary process.  

2. The value of 𝜑𝑘𝑘 always falls within the range [-1;1].  

3. The partial autocorrelation coefficient at the first lag is always equal to the autocorrelation 

coefficient at the first lag, i.e.  𝜑11 = 𝜌1, due to the absence of variables between the two 

variables 𝑦𝑡and 𝑦𝑡+1. 

4. If 𝜑𝑘𝑘 = 0, this means that there is no partial linear relationship between any two variables 

separated by k lags, while there may be a partial non-linear relationship between them.  

The partial autocorrelation function is estimated by the sample partial autocorrelation function 

using the following relationship: 
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𝑟𝑘𝑘 = �̂�𝑘𝑘 =

{
 
 
 
 

 
 
 
 
1                                    ;                                  𝑘 = 0
𝑟1                                     ;                                𝑘 = 1

|

1     𝑟1      ⋯     𝑟𝑘−2      𝑟1
 𝑟1     1      ⋯     𝑟𝑘−3     𝑟2
⋮        ⋮          ⋱          ⋮         ⋮
𝑟𝑘−1   𝑟𝑘−2      ⋯     𝑟1     𝑟𝑘

|

|

1     𝑟1      ⋯     𝑟𝑘−2    𝑟𝑘−1
 𝑟1     1      ⋯     𝑟𝑘−3    𝑟𝑘−2
⋮        ⋮          ⋱          ⋮         ⋮
𝑟𝑘−1   𝑟𝑘−2      ⋯     𝑟1     1

|

     ;     𝑘 = 2, 3, … 
 

It is calculated iteratively as follows: 

By definition                                               𝑟00 = 1       

𝑟11 = 𝜌1 

𝑟𝑘𝑘 =
𝑟𝑘 − ∑ 𝑟𝑘−1,𝑗𝑟𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝑟𝑘−1,𝑗𝑟𝑗
𝑘−1
𝑗=1

       ;          𝑘 = 2, 3, … 

Where  

𝑟𝑘𝑗 = 𝑟𝑘−1,𝑗 − 𝑟𝑘𝑘𝑟𝑘−1,𝑘−𝑗     ;             𝑗 = 1, 2, … , 𝑘 − 1 

We use the same test as in the autocorrelation function to test whether the PAF terms differ 

significantly from zero. 

Example (3.2) 

Returning to example (3.1) : 

1. Compute the first three terms of the PAF (𝑟11, 𝑟22 and 𝑟33) and plot them.  

2. Provide a 95% confidence interval for 𝜑11, 𝜑22 and 𝜑33 and test the significance of 𝑟11, 𝑟22 

and 𝑟33. 

Solution 

1. We have 

𝑟1 = −0.292    ;      𝑟2 = 0.167   ;      𝑟3 = −0.208 

So 

𝑟00 = 0 

𝑟11 = 𝑟1 = −0.292 

𝑟22 =
𝑟2 − 𝑟1

2

1 − 𝑟1
2 =

0.167 − 0.085

1 − 0.085
= 0.090 

𝑟33 =
𝑟3 − ∑ 𝑟2,𝑗𝑟3−𝑗

2
𝑗=1

1 − ∑ 𝑟2,𝑗𝑟𝑗
2
𝑗=1

=
𝑟3 − (𝑟21𝑟2 + 𝑟22𝑟1)

1 − (𝑟21𝑟1 + 𝑟22𝑟2)
 

𝑟21 = 𝑟11 − 𝑟22𝑟11 = −0.292 − (0.090)(−0.292) = −0.292 + 0.026 = −0.266 
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𝑟33 =
−0.208 − [(−0.266)(0.167) + (0.090)(−0.292)]

1 − [(−0.266)(−0.292) + (0.090)(0.167)]
=
−0.138

0.907
= −0.152 

 

2. We have 
𝑟𝑘𝑘 − 0.694 ≤ 𝜑𝑘𝑘 ≤ 𝑟𝑘𝑘 + 0.694 

Applying this to 𝜌1, 𝜌2 and 𝜌3, we obtain the following interval confidence : 

For k=1 : [[−0.986; 0.402]] 

For k=2 : [−0.604; 0.784] 

For k=3 : [−0.846; 0.542] 

We can verify that the 95 percent interval confidence for the three coefficients includes zero 

value. So the values 𝜑11, 𝜑22 and 𝜑33 are significantly equal to zero. 

3.5 ARMA Processes 

3.5.1 Backward Shift Operator and Differencing 

The backward shift operator B is a useful notational device when working with time series 

lags: 

𝐵𝑦𝑡 = 𝑦𝑡−1 

𝐵2𝑦𝑡 = 𝐵𝑦𝑡−1 = 𝑦𝑡−2 

⋮ 

𝐵𝑟𝑦𝑡 = 𝑦𝑡−𝑟   ;    𝑟 = 1, 2, … 

The backward shift operator is convenient for describing the process of differencing. A first 

difference can be written as 

𝑑𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = (1 − 𝐵)𝑦𝑡 

Similarly, if second-order differences have to be computed, then: 
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𝑑2 = 𝑑𝑑𝑦𝑡 = 𝑑(𝑦𝑡 − 𝑦𝑡−1) = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2
= (1 − 𝐵)2𝑦𝑡 

In general, we can write  

𝑑 = (1 − 𝐵) 

𝑑2 = (1 − 𝐵)2 

⋮ 

𝑑𝑟 = (1 − 𝐵)𝑟  ;    𝑟 = 1, 2, … 

3.5.1 Autoregressive Processes 

A time series (𝑦𝑡) is said to be an autoregressive process of order p (abbreviated AR (p)) if it 

is a weighted linear sum of the past p values plus a random shock so that 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 

where 𝜀𝑡 is white-noise and the 𝜙𝑖 are constants. 

We can add a constant to this process that does not alter the stochastic properties at all. 

Using the backward shift operator B, the AR (p) model may be written more succinctly in the 

form :  

𝜙(𝐵)𝑦𝑡 = 𝜀𝑡 

where 𝜙(𝐵)  =  1 − 𝜙1𝐵 − 𝜙2𝐵
2  − ·· · −𝜙𝑝𝐵

𝑝 is a polynomial in B of order p. 

The process AR(p) will be stationary if and only if the p roots of the equation 𝜙(𝐵) = 0  

exceed 1 in absolute value (modulus). For the roots to be greater than 1 in modulus, it is 

necessary, but not sufficient, that both 

𝜙1 + 𝜙2 +⋯+ 𝜙𝑝 < 1; |𝜙𝑝| < 1 

The autocorrelation function of AR (p) takes the following form : 

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 +⋯+ 𝜙𝑝𝜌𝑘−𝑝;      𝑘 = 1, 2, … 

The autocorrelation function of AR (p) is exponentially decaying or sinusoidal in the form 

of oscillations. In contrast, his partial autocorrelation function equals zero when 𝒑 < 𝒌 i.e. 

the partial autocorrelation function is zero at all lags greater than p. 

Since most economic time series subject to autoregressive models have orders less than or 

equal to zero, we will limit our discussion to first and second-order autoregressive models. 

A. AR (1) Process 

The AR (1) series is defined by 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜀𝑡 

Or 

(1 − 𝜙1𝐵)𝑦𝑡 = 𝜀𝑡 
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AR (1) will be stationary if and only if |𝜙1| < 1. 

The autocorrelation function of an AR (1) takes the following form : 

𝜌𝑘 =
𝛾𝑘
𝛾0
= 𝜙1

𝑘;            𝑘 = ±1, ±2,… 

It trails off to zero gradually. If 0 < 𝜙1 < 1, all correlations are positive; if −1 < 𝜙1 < 0, the 

lag 1 autocorrelation is negative (𝜌1 = 𝜙1) and the signs of successive autocorrelations 

alternate from positive to negative, with their magnitudes decreasing exponentially. 

The partial autocorrelation function of an AR (1) takes the following form : 

𝜑𝑘𝑘 = {
𝜙1       ;            𝑘 = 1 

0     ;      𝑘 = 2, 3, …
 

It drops to zero after the first time lag. It has a significant peak for the first lag: positive if 𝜙1 >
0 and negative if 𝜙1 < 0, the other coefficients are zero for lags > 1. 

 

 

 

Example (3.3) 

Let (𝑦𝑡) be an AR (1) process with 𝜙1 = 0.5. Is it stationary ? Compute, plote and comment 

the first four terms of autocorrelation and Partial autocorrelation function functions. 

Solution 

We have  0 < 𝜙1 = 0.5 < 1. So (𝑦𝑡) is stationary. 
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𝜌𝑘 = 𝜙1
𝑘 

𝜌1 = 0.5;  𝜌2 = 0.25;  𝜌3 = 0.125; 𝜌4 = 0.0625  

 

𝜑11 = 0.5;  𝜑22 = 0; 𝜑33 = 0 ; 𝜑44 = 0 

 

It is clear from the two figures that the ACF gradually trails off to zero. All correlations are 

positive because 0 < 𝜙1 = 0.5 < 1, while the PACF drops to zero after the first time lag and 

it has a significant positive peak because 𝜙1 > 0, the other coefficients are nulls for lags > 1. 

B. AR (2) Process 

The AR (2) model is defined by 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡 

Or  

(1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑦𝑡 = 𝜀𝑡 
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For stationarity, it requires that these roots exceed 1 in absolute value. This will be true if and 

only if three conditions are satisfied: 

𝜙1 + 𝜙2 < 1,𝜙2 −  𝜙1 < 1 and −1 < 𝜙2 < 1 

The autocorrelation function for the AR (2) takes the following form; 

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2;      𝑘 = 1, 2, … 

For example, for k = 1, we get  

𝜌1 =
𝜙1

1 − 𝜙2
 

For k=2, we get  

𝜌2 = 𝜙1𝜌1 + 𝜙2𝜌0 =
𝜙2(1 − 𝜙2) + 𝜙1

2

1 − 𝜙2
 

And so on. 

It trails off to zero exponentially or sinusoidal in the form of oscillations. 

The partial autocorrelation function takes the following form : 

𝜑𝑘𝑘 = {

𝜙1
1 − 𝜙2

     ;     𝑘 = 1

𝜙2             ;    𝑘 = 2
0            ;    𝑘 = 3,…

 

It drops to zero after the second time lag. It has significant peaks for the first and second lags, 

the other coefficients are zero for lags > 2. 
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Example (3.4) 

Let (𝑦𝑡) be an AR (2) process defined as follow : 

𝑦𝑡 = 0.7𝑦𝑡−1 − 0.2𝑦𝑡−2 + 𝜀𝑡 

Is it stationary? Compute, plot and comment the first four terms of autocorrelation and Partial 

autocorrelation function functions. 

Solution 

We have 

𝜙1 + 𝜙2 = 0.7 + (−0.2) = 0.5 < 1 

 𝜙2 −  𝜙1 = −0.2 − 0.7 = −0.9 < 1  

−1 < 𝜙2 = −0.2 < 1 

Since The three conditions of stationarity are verified, the process (𝑦𝑡) is stationary. 

𝜌1 =
𝜙1

1 − 𝜙2
=

0.7

1 + 0.2
= 0.58 

𝜌2 =
𝜙2(1 − 𝜙2) + 𝜙1

2

1 − 𝜙2
=
−0.2(1 + 0.2) + (0.7)2

1 + 0.2
= 0.21   

𝜌3 = 𝜙1𝜌2 + 𝜙2𝜌1 = (0.7)(0.21) + (−0.2)(0.58) = 0.03 

𝜌4 = 𝜙1𝜌3 + 𝜙2𝜌2 = (0.7)(0.03) + (−0.2)(0.21) = −0.03 
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𝜑11 = 𝜌1 = 0.58 

𝜑22 = 𝜙2 = −0.20 

𝜑33 = 0 

𝜑44 = 0 

 

It is clear from the two figures that the PACF exponentially trails off to zero with a change of 

signs, while the PACF drops to zero after the second time lag. 

3.5.3 Moving Average Processes 

A time series (𝑦𝑡) is said to be a moving average process of order q (abbreviated MA (q)), if 

each observation 𝑦𝑡 is generated by a weighted average of shocks up to the q-th period. 

 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 
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where 𝜀𝑡 is white-noise and the 𝜃𝑖 are constants. 

Using the backward shift operator B, the previous equation can also be written as: 

𝑦𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞)𝜀𝑡 

Or 

𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 

MA (q) processes are always stationary regardless of the constant values of 𝜃𝑖. 

The autocorrelation function of an MA(q) process is exponentially decaying or sinusoidal and 

takes the following general form: 

𝜌𝑘 = {

−𝜃𝑘+𝜃1𝜃𝑘+1+𝜃2𝜃𝑘+2+⋯+𝜃𝑞−𝑘𝜃𝑞

1+𝜃1
2+𝜃2

2+⋯+𝜃𝑞
2 ;      ;      𝑘 = 1,… , 𝑞 

0;      𝑘 > 𝑞
   

The partial autocorrelation function of an MA(q) process is exponentially decaying or 

sinusoidal and takes the following general form: 

𝜑𝑘𝑘 =
−𝜃𝑘(1 − 𝜃2)

[1 − 𝜃2(𝑘+1)]
 

A. MA (1) Process  

The MA (1) process is defined by 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 

Or  

𝑦𝑡 = (1 − 𝜃1𝐵)𝜀𝑡 

The autocorrelation function of an MA (1) process is : 

𝜌𝑘 = {

−𝜃1

1 + 𝜃1
2 ;     𝑘 = 1

0;               𝑘 ≥ 2

 

It drops to zero after the first time lag. 

The partial autocorrelation function of an MA (1) process is :  

𝜑𝑘𝑘 =

{
 
 
 

 
 
 

−𝜃1

1 + 𝜃1
2                 ;     𝑘 = 1

−𝜃1
2

1 + 𝜃1
2 + 𝜃1

4      ;      𝑘 = 2

−𝜃1
𝑘(1 − 𝜃1

2)

[1 − 𝜃1
2(𝑘+1)]

     ;       𝑘 ≥ 3

 

It trails off to zero gradually. It is exponentially decaying (𝜃1 > 0) or sinusoidal (𝜃1 < 0). 
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Example (3.5) 

Let (𝑦𝑡) be an MA (1) process with 𝜃1 = 0.5. Compute, plote and comment the first four 

terms of autocorrelation and Partial autocorrelation function functions. 

Solution 

𝜌1 =
−𝜃1

1 + 𝜃1
2 =

−0.5

1 + (0.5)2
= −0.4; 𝜌2 = 0; 𝜌3 = 0; 𝜌4 = 0 
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𝜑11 =
−𝜃1

1(1 − 𝜃1
2)

[1 − 𝜃1
2(1+1)]

=
−0.5(1 − 0.52)

1 − 0.54
= −0.4;  

𝜑22 = −0.191; 𝜑33 = −0.094; 𝜑44 = −0.0469 

 

The two figures show that the ACF drops to zero after the first time lag. While the PACF 

exponentially trails off to zero because (𝜃1 = 0.5 > 0)  

B. MA (2) Process  

The MA (2) process is defined by 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 

Or  

𝑦𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2)𝜀𝑡 

The autocorrelation function of an MA (2) process is : 

𝜌𝑘 =

{
 
 

 
 
𝜃1(𝜃2 − 1)

1 + 𝜃1
2 + 𝜃2

2  ;        𝑘 = 1

−𝜃2

1 + 𝜃1
2 + 𝜃2

2     ;     𝑘 = 2

0                    ;         𝑘 ≥ 3

 

It has significant peaks for the first and second lags. The other coefficients are zero for delays 

> 2. 

The partial autocorrelation function of an MA (2) process is : 

𝜑11 = 𝜌1 =
𝜃1(𝜃2 − 1)

1 + 𝜃1
2 + 𝜃2

2  ;        𝑘 = 1 

𝜑22 =
𝜌2 − 𝜌1

2

1 − 𝜌1
2  ;        𝑘 = 2 
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𝜑𝑘𝑘 =
𝜌𝑘 − ∑ 𝜑𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝜑𝑘−1,𝑗𝜌𝑗
𝑘−1
𝑗=1

       ;          𝑘 = 3, … 

Where  

𝜑𝑘𝑗 = 𝜑𝑘−1,𝑗 − 𝜑𝑘𝑘𝜑𝑘−1,𝑘−𝑗     ;             𝑗 = 1, 2, … , 𝑘 − 1 

 It trails off gradually. It has exponential or sinusoidal decay depending on the signs of 𝜃1 and 

𝜃2. 

 

Example (3.6) 

Let (𝑦𝑡) be an MA (2) process defined as follow : 

𝑦𝑡 = 𝜀𝑡−0.7𝑦𝑡−1 + 0.1𝑦𝑡−2 

Compute, plote and comment the first four terms of autocorrelation and Partial autocorrelation 

function functions. 

Solution 

𝜌1 =
𝜃1(𝜃2 − 1)

1 + 𝜃1
2 + 𝜃2

2 =
0.7(−0.1 − 1)

1 + (0.7)2 + (−0.1)2
= −0.513 

𝜌2 =
−𝜃2

1 + 𝜃1
2 + 𝜃2

2 =
0.1

1 + (0.7)2 + (−0.1)2
= 0.067 

𝜌3 = 0   ;    𝜌4 = 0 
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𝜑11 = 𝜌1 =
𝜃1(𝜃2 − 1)

1 + 𝜃1
2 + 𝜃2

2 = −0.513 

𝜑22 =
𝜌2 − 𝜌1

2

1 − 𝜌1
2 =

0.067 − (−0.513)2

1 − (−0.513)2
= −0.266 

𝜑33 =
𝜌3 − ∑ 𝜑2,𝑗𝜌3−𝑗

2
𝑗=1

1 − ∑ 𝜑2,𝑗𝜌𝑗
2
𝑗=1

=
𝜌3 − (𝜑21𝜌2 + 𝜑22𝜌1)

1 − (𝜑21𝜌1 + 𝜑22𝜌2)
 

𝜑21 = 𝜑11 − 𝜑22𝜑11 = −0.513 − (−0.266)(−0.513) = −0.513 − 0.136 = −0.649 

𝜑33 =
𝜌3 − ∑ 𝜑2,𝑗𝜌3−𝑗

2
𝑗=1

1 − ∑ 𝜑2,𝑗𝜌𝑗
2
𝑗=1

=
𝑟3 − (𝜑21𝜌2 + 𝜑22𝜌1)

1 − (𝜑21𝜌1 + 𝜑22𝜌2)
 

𝜑33 =
0 − [(−0.649)(0.067) + (−0.266)(−0.513)]

1 − [(−0.649)(−0.513) + (−0.266)(0.067)]
=
−0.093

0.685
= −0.136 

𝜑44 =
𝜌4 − ∑ 𝜑3,𝑗𝜌4−𝑗

3
𝑗=1

1 − ∑ 𝜑3,𝑗𝜌𝑗
3
𝑗=1

=
𝜌4 − (𝜑31𝜌3 + 𝜑32𝜌2 + 𝜑33𝜌1)

1 − (𝜑31𝜌1 +𝜑32𝜌2 + 𝜑33𝜌3)
 

𝜑31 = 𝜑21 −𝜑33𝜑22 = −0.649 − (−0.136)(−0.266) = −0.685 

𝜑32 = 𝜑22 −𝜑33𝜑21 = −0.266 − (−0.136)(−0.649) = −0.354 

𝜑44 =
0 − [(−0.685)(0) + (−0.354)(0.067) + (−0.136)(−0.513)]

1 − [(−0.685)(−0.513) + (−0.354)(0.067) + (−0.136)(0)]
= −0.069 
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The two figures show that the ACF has significant peaks for the first and second lags. The 

other coefficients are zero. While the PACF trails off exponentially. 

3.5.4 The Mixed Autoregressive Moving Average Model 

A mixed autoregressive moving average model with p autoregressive terms and q moving 

average terms is abbreviated ARMA (p, q) and may be written as 

𝑦𝑡−𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 

𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 

ARMA (p, q) process is stationary if p roots of the equation 𝜙(𝐵) = 0  exceed 1 in absolute 

value (modulus).  

The autocorrelation and partial autocorrelation patterns for autoregressive–moving average 

processes can be summarized as follows: 

The ACF has exponential or damped sinusoidal decay truncated after (q – p) lags. 

The PACF has exponential or damped sinusoidal decay truncated after (p – q) lags. 

For example, the autocorrelation function of the ARMA (1,1) process has exponential decay 

from the first lag, the sign is determined by 𝜙1 − 𝜃1. It takes the form : 

𝜌𝑘 = {

(1−𝜙1𝜃1)(𝜙1 − 𝜃1)

1 + 𝜃1
2 − 2𝜙1𝜃1

     ;    𝑘 = 1

𝜙1𝜌𝑘−1                  ;      𝑘 = 2, 3, …

 

While, the partial autocorrelation function of the same process has exponential decay (𝜃1 >
0) or damped sinusoidal (𝜃1 < 0). It takes the form : 

𝜑11 = 𝜌1 =
(1−𝜙1𝜃1)(𝜙1 − 𝜃1)

1 + 𝜃1
2 − 2𝜙1𝜃1

 ;        𝑘 = 1 

𝜑22 =
𝜌2 − 𝜌1

2

1 − 𝜌1
2  ;        𝑘 = 2 
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𝜑𝑘𝑘 =
𝜌𝑘 − ∑ 𝜑𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝜑𝑘−1,𝑗𝜌𝑗
𝑘−1
𝑗=1

       ;          𝑘 = 3, … 

Where  

𝜑𝑘𝑗 = 𝜑𝑘−1,𝑗 − 𝜑𝑘𝑘𝜑𝑘−1,𝑘−1     ;             𝑗 = 1, 2, … , 𝑘 − 1 
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The stationarity condition for the ARMA (1,1) process is, thus, the same as that for an AR(1) 

The numbers of autoregressive and moving average terms (orders p and q) in an ARMA 

model are determined from the patterns of the sample autocorrelations and partial 

autocorrelations and the values of the model selection criteria that are discussed in a later 

section of this chapter. In practice, the values of p and q each rarely exceed 2. 

Example (3.7) 

Let (𝑦𝑡) be an ARMA (1, 1) process defined as follow : 

𝑦𝑡 = 0.9𝑦𝑡−1 + 0.5𝜀𝑡−1 + 𝜀𝑡 

Compute, plote and comment the first four terms of autocorrelation and Partial autocorrelation 

function functions. 

Solution 

𝜌1 =
(1−𝜙1𝜃1)(𝜙1 − 𝜃1)

1 + 𝜃1
2 − 2𝜙1𝜃1

=
(1 − (0.9)(−0.5))(0.9 + 0.5)

1 + (−0.5)2 − 2(0.9)(−0.5)
= 0.944 

𝜌2 = 𝜙1𝜌1 = (0.9)(0.944) = 0.850 

𝜌3 = 𝜙1𝜌2 = (0.9)(0.850) = 0.765 

𝜌4 = 𝜙1𝜌3 = (0.9)(0.765) = 0.689 

 

𝜑11 = 𝜌1 = 0.944 

𝜑22 =
𝜌2 − 𝜌1

2

1 − 𝜌1
2 =

0.850 − (0.944)2

1 − (0.944)2
= −0.378 

𝜑33 =
𝜌3 − ∑ 𝜑2,𝑗𝜌3−𝑗

2
𝑗=1

1 − ∑ 𝜑2,𝑗𝜌𝑗
2
𝑗=1

=
𝜌3 − (𝜑21𝜌2 + 𝜑22𝜌1)

1 − (𝜑21𝜌1 + 𝜑22𝜌2)
 

𝜑21 = 𝜑11 − 𝜑22𝜑11 = 0.944 − (−0.378)(0.944) = 1.300 
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𝜑33 =
0.765 − [(1.300)(0.850) + (−0.378)(0.944)]

1 − [(1.300)(0.944) + (−0.378)(0.850)]
= 0.179 

𝜑44 =
𝜌4 − ∑ 𝜑3,𝑗𝜌4−𝑗

3
𝑗=1

1 − ∑ 𝜑3,𝑗𝜌𝑗
3
𝑗=1

=
𝜌4 − (𝜑31𝜌3 + 𝜑32𝜌2 + 𝜑33𝜌1)

1 − (𝜑31𝜌1 +𝜑32𝜌2 + 𝜑33𝜌3)
 

𝜑31 = 𝜑21 − 𝜑33𝜑22 = 1.300 − (0.179)(−0.378) = 1.368 

𝜑32 = 𝜑22 − 𝜑33𝜑21 = −0.378 − (0.179)(1.300) = −0.611 

𝜑44 =
0.689 − [(1.368)(0.765) + (−0.611)(0.850) + (0.179)(0.944)]

1 − [(1.368)(0.944) + (−0.611)(0.850) + (0.179)(0.765)]
= −0.079 

 

 

3.5.5 ARIMA Models 

Many time series are nonstationary, so we cannot directly apply stationary AR, MA or ARMA 

processes. One possible way of handling nonstationary series is to apply differencing to make 

them stationary.  

The first differences, namely (𝑦𝑡 − 𝑦𝑡−1) = (1 − 𝐵)𝑦𝑡 may themselves be differenced to give 

second differences, and so on. The dth differences may be written as (1 − 𝐵)𝑑𝑦𝑡.  

Suppose the original data series is differenced d times before fitting an ARMA (p, q) process. 

In that case, the model for the original undifferenced series is said to be an ARIMA (p, d, q) 

process where the letter ‘I’ in the acronym stands for integrated and d denotes the number of 

differences taken. 

Mathematically, the previous equation is generalised to give: 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 

First-order differencing is usually adequate for non-seasonal series, though second-order 

differencing is occasionally needed. Once the series has been made stationary, an ARMA 

model can be fitted to the differenced data in the usual way. 

It is not always possible to achieve stationarity this way. For certain series that exhibit an 

exponential trend or a variance that changes over time, it is sometimes necessary to apply the 
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logarithmic transformation or, more generally, a Box-Cox transformation: …. The logarithmic 

case corresponds to the case λ = 0. 

3.5.6 SARIMA Models 

A SARIMA model with non-seasonal terms of order (p, d, q) and seasonal terms of order (P, 

D, Q) is abbreviated a SARIMA (p, d, q) x (P, D, Q)s model and may be written  

𝜙(𝐵)Φ(𝐵𝑆)(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑦𝑡 = 𝜃(𝐵)Θ(𝐵
𝑆)𝜀𝑡 

Where Φ, Θ denote polynomials in 𝐵𝑆 of order P, Q, respectively. 

For example, the SARIMA model of order (0, 1, 1) × (0, 1, 1)𝑠 and for monthly data, with s = 

12, the latter may be written 

(1 − 𝐵)(1 − 𝐵12)𝑦𝑡 = (1 + 𝜃𝐵)(1 + 𝛩𝐵
12)𝜀𝑡 

When fitting SARIMA models, the analyst must first choose suitable values for the two orders 

of differencing, both seasonal (D) and non-seasonal (d), so as to make the series stationary 

and remove (most of) the seasonality. 

Then an ARMA-type model is fitted to the differenced series with the added complication that 

there may be AR and MA terms at lags which are a multiple of the season length s. 

3.6 Modelling and Forecasting with ARMA Processes 
Box and Jenkins developed an iterative three-step approach: identification, estimation, and 

diagnostic checking. 

 

Step 1: Model Identification 

To identify an appropriate ARMA model, first determine if the series is stationary by plotting 

it and the sample autocorrelation function. If the time series plot appears to grow or decline 

over time and the sample autocorrelation function….,a nonstationary time series is indicated. 

If the series is not stationary, it can often be converted to a stationary series by differencing and 

Box-Cox transformation if necessary. Then, compare the data's autocorrelations and partial 

autocorrelations of the stationary series to theoretical autocorrelations for various ARMA 

models. Each ARMA model has unique autocorrelations and partial autocorrelations, so the 

initial model selection should be tentative. Analyses can be conducted during steps 2 and 3, and 

with practice, the analyst can identify an adequate model. 

Box and Jenkins' parsimonious parametrisation suggests that starting with simple, low-order 

models is generally recommended and only moving to higher-order ones if the diagnostic stage 

indicates its need. 

After stationarisation, we can identify the values of the parameters p and q of the ARMA model.  

- If the simple correlogram has only its first q terms (q = 3 maximum) different from 0 and the 

terms of the partial correlogram decrease slowly, we can forecast an MA(q).  

- If the partial correlogram has only its first p terms (p = 3 maximum) different from 0 and the 

terms of the simple correlogram decrease slowly, this characterizes an AR(p).  

- If the simple and partial autocorrelation functions do not appear truncated, then it is an ARMA-

type process, whose parameters depend on the particular shape of the correlograms. 
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The orders of the MA and AR parts can be determined by counting the number of significant 

sample autocorrelations and partial autocorrelations. 

- Seasonality may suggest itself autocorrelations and/or partial autocorrelations at the  

 

 

Step 2: Model Estimation 

Once a tentative model has been selected, its parameters must be estimated. Different methods 

are available, including moments, unconditional least-squares methods, conditional least 

squares and maximum likelihood  

Step 3: Model Checking 

Once the parameters have been estimated, the residuals 𝜀�̂� are usually inspected for the 

presence of some remaining autocorrelation. 

The model parameters being estimated (the convergence of the iterative estimation procedure 

is checked), we examine the estimation results.  

• The model coefficients must be significantly different from 0 (the Student's t-test is applied 

in the usual manner). If a coefficient is not significantly different from 0, it is advisable to 

consider a new specification that eliminates the order of the invalid AR or MA model.  

• Residual analysis: if the residuals follow a white noise pattern, there should be no 

autocorrelation in the series and the residuals should be homoscedastic. The Ljung-Box tests 

allow testing all terms of the autocorrelation function, which is approximately distributed as a 

chi-square random variable with m-r degrees of freedom where r is the total number of 

parameters estimated in the ARMA model. The test statistic is : 

𝐿𝐵 = 𝑛(𝑛 + 2)∑ (
�̂�𝑘
2(𝑒)

𝑛 − 𝑘
)

𝑚

𝑘=1
 

Where 

𝜌𝑘(𝑟): the residual autocorrelation at lag k. 

n: the number of residuals. 

k : the time lag. 

m : the number of time lags be tested 

Forecasting with the Model 
Once an adequate model has been found, forecasts for one period or several periods into the 

future can be made. Forecasts and prediction intervals can be calculated using computer 

programs that fit ARMA models.  

As more data becomes available, the same model can be used to generate revised forecasts from 

different time origins.  

If the series pattern changes, new data can be used to reestimate model parameters or develop 

a new model.  

Monitoring forecast errors is crucial, as recent errors may require reevaluation or another 

iteration of the model-building strategy. 

Example (3.8) 

Let be a time series of Daily Closing Averages of the Dow Jones Transportation Index. 
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The plot of the series shows an upward trend in the series and the first several autocorrelations 

were persistently large and trailed off to zero rather slowly. So This time series is nonstationary 

and did not vary about a fixed level. 
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We difference the data to see if she could eliminate the trend and create a stationary series. A 

plot of the differenced data appears to vary about a fixed level. 
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The sample autocorrelations and the sample partial autocorrelations for the differences are 

displayed below 
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Comparing the autocorrelations with their error limits, the only significant autocorrelation was 

at lag 1. Similarly, only the lag 1 partial autocorrelation was significant. The autocorrelations 

appear to cut off after lag 1, indicating MA(1) behaviour. At the same time, the partial 

autocorrelations appear to cut off after lag 1, indicating AR(1) behavior. Neither pattern appears 

to die out in a declining manner at low lags. So both ARIMA(1, 1, 0) and ARIMA(0, 1, 1) 

models are fitted to the Transportation Index. We can include a constant term in each model to 

allow the series of differences to vary about a level greater than zero. If 𝑦𝑡 denotes the 

Transportation Index, then the differenced series is 𝑑𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, and the models are : 

ARIMA (1, 1, 0) : 𝑑𝑦𝑡 = 𝜙0 + 𝜙1𝑑𝑦𝑡−1 + 𝜀𝑡 

ARIMA (0, 1, 1) : 𝑑𝑦𝑡 = 𝜇 + 𝜀𝑡 − 𝜃1𝑑𝜀𝑡−1 

The results show no significant residual autocorrelation for the two models. The Ljung-Box Q 

statistics computed for groups of lags, 24, 36, and 48 are not significant, as indicated by the 

large p-values for each model. so either model is adequate. Moreover, the one-step-ahead 

forecasts provided by the two models are nearly the same. However,  ARIMA(1, 1, 0) model 

is preferred based on its slightly better fit.  
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The forecast for period 66 for this model is computed as follows: 

with �̂�0 = 0.741 and �̂�1 = 0.284, the forcasting equation becames 

�̂�66 = 𝑦65 + 0.741 + 0.284(𝑦65 − 𝑦64) = 288.57 + 0.741 + 0.284(288.57 − 286.23)

= 289.47 
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4.1 Introduction 

Sometimes, the effect of a change in an explanatory variable (𝑋𝑡) does not instantaneously 

show up in the forecast variable (𝑌𝑡) but is distributed across several periods. Fore example, the 

effect of an advertising campaign lasts for some time beyond the end of the campaign. Monthly 

sales (𝑌𝑡) may be modeled as a function of the advertising expenditure in each of the past few 

months, that is 𝑋𝑡, 𝑋𝑡−1, 𝑋𝑡−2, . . . . In this case, there is an output time series, called 𝑌𝑡, which 

is influenced by an input time series, called 𝑋𝑡. The whole system is a dynamic system. 

Dynamic regression modeling is a dynamic system where an output time series, 𝑌𝑡, is influenced 

by an input time series, 𝑋𝑡, which exerts its influence on the output series over multiple future 

periods. If the regression model includes not only the current but also the lagged (past) values 

of the explanatory variables (the X’s), it is called a distributed-lag model. If the model includes 

one or more lagged values of the dependent variable among its explanatory variables, it is called 

an autoregressive model.  

4.2 The Reasons for Lags 

There are three main reasons: 

1. Psychological Reasons: 

• People often resist changing consumption habits immediately after a price decrease or 

income increase due to habitual disutility. 

• The process of change may involve immediate disutility, such as winning lotteries. 

• People may not know if a change is "permanent" or "transitory." 

2. Technological Reasons: 

• If the price of capital relative to labor declines, firms may not rush to substitute capital for 

labor. 

• Imperfect knowledge can also account for lags. 

• The market for personal computers is saturated with varying features and prices, leading to 

potential reluctance to buy until consumers have had time to compare features and prices. 

3. Institutional Reasons: 

• Contractual obligations may prevent firms from switching from one source of labor or raw 

material to another. 

• Employees may be "locked in" to long-term savings accounts or health insurance plans for at 

least one year. 

4.3 Distributed-Lag Models 

4.3.1 Definition 

In these models, the explanatory variables include only current and lagged values of the 

independent variables. In other words, the effect of an event may be distributed over several 

periods. Distributed-kag models take two forms : 

A. Infinite (lag) model 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ⋯ + 𝜀𝑡      (4.1) 
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B. Finite (lag) model 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ⋯ + 𝛽𝑘𝑋𝑡−𝑘 + 𝜀𝑡       (4.2) 

Where 

𝛽0 : is known as the short-run (impact) multiplier. 

 𝛽1, 𝛽2, … .  : delay coefficients of X 

𝛽 = ∑ 𝛽𝑖
∞
𝑖=1  : is known as the long-run (total) distributed-lag multiplier. 

4.3.2 Estimation  

A. Ad Hoc Estimation  

The explanatory variable Xt is assumed to be nonstochastic, allowing for the application of 

ordinary least squares (OLS). We must proceed sequentially by regressing 𝑌𝑡 on 𝑋𝑡, then 𝑌𝑡 on 

𝑋𝑡 and 𝑋𝑡−1, then 𝑌𝑡 on 𝑋𝑡, 𝑋𝑡−1, and 𝑋𝑡−2,and so on. This sequential procedure stops when (i) 

the regression coefficients of the lagged variables start becoming statistically insignificant 

and/or (ii) the coefficient of at least one of the variables changes sign. For two, three and 

four regressors, the last equation respectively takes the form: 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2+𝜀𝑡 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝛽3𝑋𝑡−3 + 𝜀𝑡 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝛽3𝑋𝑡−3 + 𝛽4𝑋𝑡−4 + 𝜀𝑡 

Now, from the three equations, we need to choose the best one. For this, suppose: β is 

positive in the second equation but negative in the third equation. Then, the second equation 

will be regarded as the best equation. 

Example (4.1) 

The folowing equations are the results of regressing a dependent variable Y on an independent 

variable X : 

�̂�𝑡 = 8.37 + 0.171𝑋𝑡 

�̂�𝑡 = 8.27 + 0.111𝑋𝑡 + 0.064𝑋𝑡−1 

�̂�𝑡 = 8.27 + 0.109𝑋𝑡 + 0.071𝑋𝑡−1 − 0.055𝑋𝑡−2 

�̂�𝑡 = 8.32 + 0.108𝑋𝑡 + 0.063𝑋𝑡−1 + 0.022𝑋𝑡−2 − 0.020𝑋𝑡−3 

Solution 

Based on theses results, we chose the second regression as the “best’’ one because in the last 

two equations the sign of 𝑋𝑡−2 was not stable and in the last equation the sign of 𝑋𝑡−3 was 

negative, which may be difficult to interpret economically. 

This method has limitations, including no guide for lag length, fewer degrees of freedom, and 

high correlation in economic time series data. This leads to imprecise estimation and potential 

misspecification errors. Therefore, it cannot be easily recommended and requires prior or 

theoretical considerations for progress. 

 

B. Koyck’s Approach 
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Koyck’s method considers a geometric lag scheme. Koyck’s distributed lag model assumes that 

the weights are declining continuously following the geometric progression pattern. 

Koyck’s geometric lag implies that the more recent values of X exert a greater influence on Y 

than the remote values of X. Let us verify how the lag coefficients of this model decline in the 

form of a geometric progression. 

We have: 

𝛽1 = 𝜆𝛽0 

𝛽2 = 𝜆𝛽1 = 𝜆(𝜆𝛽0) = 𝜆2𝛽0 

𝛽3 = 𝜆𝛽2 = 𝜆(𝜆𝛽1) = 𝜆2(𝜆𝛽0) = 𝜆3𝛽0 

 

So we can generalise as: 

𝛽𝑖 = 𝜆𝑖𝛽0;    0 < 𝜆 < 1 

We can write the sum of the regression coefficients of Equation (4.2) as: 

 

∑ 𝛽𝑖

∞

𝑖=1
= 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + ⋯ = 𝛽0 + 𝜆𝛽0 + 𝜆2𝛽0 + 𝜆3𝛽0 + ⋯

= 𝛽0(1 + 𝜆 + 𝜆2 + 𝜆3 + ⋯ ) = 𝛽0 (
1

1 − 𝜆
) 

 

Note that the Equation (4.2) can be written as: 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝜆𝛽0𝑋𝑡−1 + 𝜆2𝛽0𝑋𝑡−2 + 𝜆3𝛽0𝑋𝑡−3 + ⋯ + 𝜀𝑡 

This equation is difficult to estimate because we have an infinite number of parameters. The 

parameters are also non-linear. Hence, Koyck suggested a technique known as the ‘Koyck 

transformation’. Let us consider a one-period lag for Equation (4.2) as: 

𝑌𝑡−1 = 𝛼 + 𝛽0𝑋𝑡−1 + 𝜆𝛽0𝑋𝑡−2 + 𝜆2𝛽0𝑋𝑡−3 + 𝜆3𝛽0𝑋𝑡−4 + ⋯ + 𝜀𝑡−1 

Multiplying this equation by λ, we get: 

𝜆𝑌𝑡−1 = 𝜆𝛼 + 𝜆𝛽0𝑋𝑡−1 + 𝜆2𝛽0𝑋𝑡−2 + 𝜆3𝛽0𝑋𝑡−3 + 𝜆4𝛽0𝑋𝑡−4 + ⋯ + 𝜆𝜀𝑡−1 

Subtracting this equation from the Equation (4.2), we get: 

𝑌𝑡 − 𝜆𝑌𝑡−1 = (1 − 𝜆)𝛼 + 𝛽0𝑋𝑡 + (𝜀𝑡 − 𝜆𝜀𝑡−1) 

𝑌𝑡 = (1 − 𝜆)𝛼 + 𝛽0𝑋𝑡 + 𝜆𝑌𝑡−1 + 𝜈𝑡 

Where, 𝜈𝑡 = (𝜀𝑡 − 𝜆𝜀𝑡−1)  is the new error term. 

A unique feature of the Koyck model is that we started with an infinite distributed lag model 

but ended up with an autoregressive model with only three parameters, λ, α0, and 𝛽0  to be 

estimated. Koyck's geometric lag structure eliminates two limitations of distributed lag models, 

achieving maximum economy of degrees of freedom and avoiding multicollinearity to a certain 

extent. 

Example (4.1) 

The data in the table below represent the quantity demanded (Y) of a certain good and the 

actual price of that good (X). 

t Y X 

1 30.6 125 

2 31.6 140 

3 31.3 130 
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4 33.3 155 

5 33.5 145 

6 33.2 163 

7 36.7 170 

8 38.6 182 

9 39.0 173 

10 40.8 192 

11 42.7 203 

12 41.9 178 

13 40.2 163 

14 40.7 182 

15 40.4 175 

estimate the regression equation using the Koyck model. 

Solution 

We estimate the Koyk’s equation 𝑌𝑡 = (1 − 𝜆)𝛼 + 𝛽0𝑋𝑡 + 𝜆𝑌𝑡−1 + 𝜈𝑡  using the OLS method. 

The regression results were as follows: 

�̂�𝑡 = 1.51 + 0.08𝑋𝑡 + 0.60𝑌𝑡−1 

We have 

�̂� = 0.60, �̂�0 = 0.08, and (1 − 0.60)�̂� = 1.51 so �̂� =
1.51

0.40
= 3.775 

The model can therefore be written as: 

�̂�𝑡 = 3.775 + 0.08𝑋𝑡 + 0.60 × 0.08𝑋𝑡−1 + 0.60 × 0.082𝑋𝑡−2 + ⋯ 

= 3.775 + 0.08𝑋𝑡 + 0.60 × 0.048𝑋𝑡−1 + 0.0.004𝑋𝑡−2 + ⋯ 

Koyck's autoregressive distributed lag model has limitations, including autocorrelation of the 

error term vt, non-independent lagged variable 𝑌𝑡−1, asymptotically biased OLS estimates, and 

a violation of the power of Durbin-Watson d statistics in detecting autocorrelation.  

The Koyck model lacks theoretical support due to its essentially algebraic origins. To obtain 

these theoretical economic frameworks, models known as adaptive expectation model and 

partial adjustment model. 

B.1 Adaptive Expectation Model  

In the adaptive expectation model, a further complication is introduced. In this model, the 

dependent variable 𝑌𝑡 is impacted by the “expectation” of the causal variable 𝑋𝑡. Suppose 

capital investment is the dependent variable and is influenced by corporate earnings. Since 

decisions to invest might be tied to the expected future earnings, the independent variable is 

unobservable. 

Assume we postulate the following model : 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡
∗ + 𝜀𝑡        

𝑋∗ : equilibrium, optimum, expected long-run.  

𝜀𝑡: error term 

 

In this type of model, it is assumed that the parameters βi are polynomials in i of degree q, 

Given that the expectational variable X∗ is not immediately observable, we propose the 

following hypothesis regarding how expectations are formed: 
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𝑋𝑡
∗ − 𝑋𝑡−1

∗ = 𝛾(𝑋𝑡
∗ − 𝑋𝑡−1

∗ ) 

where 𝛾, such that 0 < 𝛾 ≤ 1, is known as the coefficient of expectation.  

The precedent hypothesis is known as the adaptive expectation, progressive expectation, or 

error learning hypothesis, popularized by Cagan and Friedman. 

This equation suggests that economic agents adapt their expectations based on past experience 

and learn from mistakes. It states that expectations are revised each period by a fraction 𝛾 of 

the gap between the current and previous expected value, such as interest rates. 

This equation can be written as follows: 

𝑋𝑡
∗ = 𝛾𝑋𝑡

∗ + (1 − 𝛾)𝑋𝑡−1
∗  

Substituting the last equation into precedent equation, we obtain 

𝑌𝑡 = 𝛽0 + 𝛽1[𝛾𝑋𝑡
∗ + (1 − 𝛾)𝑋𝑡−1

∗ ] + 𝜀𝑡 

=  𝛽0 + 𝛽1𝛾𝑋𝑡
∗ + 𝛽1(1 − 𝛾)𝑋𝑡−1

∗ + 𝜀𝑡     

To solve this equation, lag it one period, multiply it by 1 − 𝛾, and subtract the product from 

the last equation, then perform simple algebraic manipulations. 

𝑌𝑡 = 𝛾𝛽0 + 𝛾𝛽1𝑋𝑡 + (1 − 𝛾)𝑌𝑡−1 + 𝜀𝑡 − (1 − 𝛾)𝜀𝑡−1 

= 𝛾𝛽0 + 𝛾𝛽1𝑋𝑡 + (1 − 𝛾)𝑌𝑡−1 + 𝜈𝑡 

Where 𝜈𝑡 = 𝜀𝑡 − (1 − 𝛾)𝜀𝑡−1 

B.2 Partial Adjustment Model 

The partial adjustment model presumes that habit plays a critical role in how consumers and 

producers do not move completely from one equilibrium point to another. The theory behind 

the partial adjustment model is that the behaviorally desired level of Y in period t is an 

unobservable variable Y* that can be written as: 

𝑌𝑡
∗ = 𝛽0 + 𝛽1𝑋𝑡 + 𝜀𝑡 

Since the desired level of capital is not directly observable, Nerlove postulates the following 

hypothesis, known as the partial adjustment, or stock adjustment, hypothesis: 

𝑌𝑡 − 𝑌𝑡−1 = 𝛿(𝑌𝑡
∗ − 𝑌𝑡−1) 

where 𝛿, such that 0 <  𝛿 ≤  1, is known as the coefficient of adjustment and where 

𝑌𝑡 − 𝑌𝑡−1 : actual change and (𝑌𝑡
∗ − 𝑌𝑡−1) : desired change. 

Since 𝑌𝑡 − 𝑌𝑡−1, the change in capital stock between two periods is nothing but investment, 

Eq. (17.6.2) can alternatively be written as 

𝐼𝑡 = 𝛿(𝑌𝑡
∗ − 𝑌𝑡−1) 

where 𝐼𝑡 : investment in time period t. 

Equation (17.6.2) states that the actual change in capital stock (investment) is a fraction δ of 

the desired change for a given time period. If δ = 1, the actual stock equals the desired stock, 

while if δ = 0, nothing changes. The partial adjustment model is typically between these 

extremes. Note that the adjustment mechanism (17.6.2) alternatively can be written as 

𝑌𝑡 = 𝛿𝑌𝑡
∗ + (1 − 𝛿)𝑌𝑡−1 

showing that the observed capital stock at time t is a weighted average of the desired capital 

stock at that time and the capital stock existing in the previous time period, δ and (1 − δ) 

being the weights. Now substitution of Eq. (17.6.1) into Eq. (17.6.4) gives 

𝑌𝑡 = 𝛿(𝛽0 + 𝛽1𝑋𝑡 + 𝜀𝑡) + (1 − 𝛿)𝑌𝑡−1 

= 𝛿𝛽0 + 𝛿𝛽1𝑋𝑡 + (1 − 𝛿)𝑌𝑡−1 + 𝛿𝜀𝑡 

This model is called the partial adjustment model (PAM). 
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Example (4.3) 

Use the data of example (4.2) to estimate the adaptative expectation and partial adjustment 

models. 

Solution 

1. The adaptative expectation model : 

𝑌𝑡 = 𝛾𝛽0 + 𝛾𝛽1𝑋𝑡 + (1 − 𝛾)𝑌𝑡−1 + 𝜈𝑡  

�̂�𝑡 = 1.51 + 0.08𝑋𝑡 + 0.60𝑌𝑡−1 

(1 − 𝛾) = 0.60 𝑠𝑜 𝛾 = 1 − 0.60 = 0.40 

𝛾�̂�0 = 1.96 so �̂� =
1.96

0.40
= 4.90 

𝛾�̂�1 = 0.08 so �̂�1 =
0.08

0.40
= 0.20 

With   

𝑋𝑡
∗ − 𝑋𝑡−1

∗ = 0.40(𝑋𝑡
∗ − 𝑋𝑡−1

∗ ) 

So the expectation coefficient 𝛾 = 1 − 0.60 = 0.40, and, following the preceding discussion 

about the AE model, we can say that about 40 percent of the discrepancy between actual and 

expected PPDI is eliminated within a year. 

2. The partial adjustment model 

𝑌𝑡 = 𝛿𝛽0 + 𝛿𝛽1𝑋𝑡 + (1 − 𝛿)𝑌𝑡−1 + 𝛿𝜀𝑡 

𝑌𝑡
∗ = 𝛽0 + 𝛽1𝑋𝑡 + 𝜀𝑡 

�̂�𝑡 = 1.51 + 0.08𝑋𝑡 + 0.60𝑌𝑡−1 

With   

𝑌𝑡 − 𝑌𝑡−1 = 0.40(𝑌𝑡
∗ − 𝑌𝑡−1) 

C. The Almon Approach 

The Koyck distributed-lag model assumes that β coefficients decline geometrically as lag 

lengthens. However, this assumption may be too restrictive in certain situations. Shirley 

Alman's approach suggests expressing βi as a function of lag length and fitting curves to reflect 

the functional relationship between the two. To illustrate her technique, let us revert to the finite 

distributed-lag model considered previously, namely, 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ⋯ + 𝛽𝑘𝑋𝑡−𝑘 + 𝜀𝑡 

which may be written more compactly as 

𝑌𝑡 = 𝛼 + ∑ 𝛽𝑖

𝑘

𝑖=0

𝑋𝑡−𝑖 + 𝜀𝑡 

Weierstrass' theorem suggests that βi can be approximated by a suitable-degree polynomial in 

i, the length of the lag. 

𝛽𝑖 = 𝛼0 + 𝛼1𝑖 + 𝛼2𝑖2 + ⋯ + 𝛼𝑚𝑖𝑚 

which is an mth-degree polynomial in i. It is assumed that m (the degree of the polynomial) 

is less than k (the maximum length of the lag). 

𝑌𝑡 = 𝛼 + ∑(𝛼0 + 𝛼1𝑖 + 𝛼2𝑖2 + ⋯ + 𝛼𝑚𝑖𝑚)

𝑘

𝑖=0

𝑋𝑡−𝑖 + 𝜀𝑡 

= 𝛼 + 𝛼0 ∑ 𝑋𝑡−𝑖

𝑘

𝑖=0

+ 𝛼1 ∑ 𝑖𝑋𝑡−𝑖

𝑘

𝑖=0

+ 𝛼2 ∑ 𝑖2𝑋𝑡−𝑖

𝑘

𝑖=0

+. . +𝛼𝑚 ∑ 𝑖𝑚𝑋𝑡−𝑖

𝑘

𝑖=0

+ 𝜀𝑡 
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Defining 

𝑍0𝑡 = ∑ 𝑋𝑡−𝑖

𝑘

𝑖=0

 

𝑍1𝑡 = ∑ 𝑖𝑋𝑡−𝑖

𝑘

𝑖=0

 

𝑍2𝑡 = ∑ 𝑖2𝑋𝑡−𝑖

𝑘

𝑖=0

 

. 

. 

. 

𝑍𝑚𝑡 = ∑ 𝑖𝑚𝑋𝑡−𝑖

𝑘

𝑖=0

 

we may write the precedent equation as 

𝑌𝑡 = 𝛼 + 𝛼0𝑍0𝑡 + 𝛼1𝑍1𝑡 + 𝛼2𝑍2𝑡+. . +𝛼𝑚𝑍𝑚𝑡 + 𝜀𝑡 

Once the a’s are estimated from Eq. (17.13.7), the original β’s can be estimated from 

Eq. (17.13.2) (or more generally from Eq. [17.13.4]) as follows: 

�̂�0 = �̂�0 

�̂�1 = �̂�0 + �̂�1 + �̂�2 

�̂�2 = �̂�0 + 2�̂�1 + 4�̂�2 

�̂�3 = �̂�0 + 3�̂�1 + 9�̂�2 

. 

. 

. 

�̂�𝑘 = �̂�0 + 𝑘�̂�1 + 𝑘2�̂�2 

Before we apply the Almon technique, we must resolve the following practical 

problems. 

1. The maximum length of the lag k must be specified in advance. The Akaike or Schwarz 

information criterion can be used to determine the appropriate lag length. 

2. Having specified k, we must also specify the degree of the polynomial m. Generally,the 

degree should be at least one more than the number of turning points. The choice of m is 

subjective, but in practice, a low-degree polynomial (m = 2 or 3) is expected. 

3. Once m and k are specified, the Z’s can be readily constructed. For instance, if m = 2 

and k = 5, the Z’s are 

𝑍0𝑡 = ∑ 𝑋𝑡−𝑖

5

𝑖=0

= (𝑋𝑡 + 𝑋𝑡−1 + 𝑋𝑡−2 + 𝑋𝑡−3 + 𝑋𝑡−4 + 𝑋𝑡−5) 

𝑍1𝑡 = ∑ 𝑖𝑋𝑡−𝑖

5

𝑖=0

= (𝑋𝑡−1 + 2𝑋𝑡−2 + 3𝑋𝑡−3 + 4𝑋𝑡−4 + 5𝑋𝑡−5) 
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𝑍2𝑡 = ∑ 𝑖2𝑋𝑡−𝑖

5

𝑖=0

= (𝑋𝑡−1 + 4𝑋𝑡−2 + 9𝑋𝑡−3 + 16𝑋𝑡−4 + 25𝑋𝑡−5) 

The Almon method offers several advantages over the Koyck technique, including flexibility 

in incorporating various lag structures, avoiding the presence of the lagged dependent variable 

as an explanatory variable, and reducing the number of coefficients to be estimated. However, 

the Almon technique has problems, such as subjective decision-making regarding the degree 

of the polynomial and maximum lag value, and the potential for multicollinearity in Z 

variables. However, this problem may not be as severe as initially thought, as a linear 

combination of coefficients can be estimated more precisely. 

 

Example (4.4) 

Use the data of example (4.2) to estimate the regression equation using the Almon Approach. 

Solution 

t Y X 

1 52.9 30.3 

2 53.8 30.9 

3 54.9 30.9 

4 58.2 33.4 

5 60.0 35.1 

6 63.4 37.3 

7 68.2 41.0 

8 78.0 44.9 

9 84.7 46.5 

10 90.6 50.3 

11 98.2 53.5 

12 101.7 52.8 

13 102.7 55.9 

14 108.3 63.0 

15 124.7 73.0 

16 157.9 84.8 

17 158.2 86.6 

18 170.2 98.8 

19 180.0 110.8 

20 198.0 124.7 

 

 

 

Solution 

𝑍0𝑡 = ∑ 𝑋𝑡−𝑖

3

𝑖=0

= (𝑋𝑡 + 𝑋𝑡−1 + 𝑋𝑡−2 + 𝑋𝑡−3) 
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𝑍1𝑡 = ∑ 𝑖𝑋𝑡−𝑖

3

𝑖=0

= (𝑋𝑡−1 + 2𝑋𝑡−2 + 3𝑋𝑡−3) 

𝑍2𝑡 = ∑ 𝑖2𝑋𝑡−𝑖

3

𝑖=0

= (𝑋𝑡−1 + 4𝑋𝑡−2 + 9𝑋𝑡−3) 

t Y X 𝑍0𝑡 𝑍1𝑡 𝑍2𝑡 

1 52.9 30.3    

2 53.8 30.9    

3 54.9 30.9    

4 58.2 33.4 125.5 183.6 427.2 

5 60.0 35.1 130.3 187.9 435.1 

6 63.4 37.3 136.7 194.6 446.8 

7 68.2 41.0 146.8 207.7 478.3 

8 78.0 44.9 158.3 220.9 506.1 

9 84.7 46.5 169.7 238.8 544.6 

10 90.6 50.3 182.7 259.3 595.1 

11 98.2 53.5 195.2 278.0 640.4 

12 101.7 52.8 203.1 293.6 673.2 

13 102.7 55.9 212.5 310.7 719.6 

14 108.3 63.0 225.2 322.0 748.6 

15 124.7 73.0 244.7 333.2 761.8 

16 157.9 84.8 276.7 366.7 828.1 

17 158.2 86.6 307.4 419.8 943.8 

18 170.2 98.8 343.2 475.2 1082.8 

19 180.0 110.8 381.0 526.4 1208.4 

20 198.0 124.7 420.9 568.2 1285.4 

 

By regressing Y on Z, we obtain : 

�̂�𝑡 = 8.68 + 0.91𝑍0𝑡 + 0.30𝑍1𝑡 − 0.28𝑍2𝑡 

�̂� = 8.68 

�̂�0 = �̂�0 = 0.91 

�̂�1 = �̂�0 + �̂�1 + �̂�2 = 0.91 + 0.30 − 0.28 = 0.93 

�̂�2 = �̂�0 + 2�̂�1 + 4�̂�2 = 0.91 + 0.60 − 1.12 = 0.30 

�̂�3 = �̂�0 + 3�̂�1 + 9�̂�2 = 0.91 + 0.90 − 2.52 = −0.71 

�̂�𝑡 = 8.68 + 0.91𝑋𝑡 + 0.93𝑋𝑡−1 + 0.30𝑋𝑡−2 − 0.71𝑋𝑡−3 

4.4 Autoregressive Models 

4.4.1 Definition 

In this type of model, the endogenous variable 𝑌𝑡 depends on: 

- k exogenous variables 𝑋𝑡 , 𝑋𝑡−1, . . . , 𝑋𝑡−𝑘  at time t; 

- the values that the variable 𝑌𝑡 takes during previous periods, 𝑌𝑡−1, 𝑌𝑡−2, . . ., 𝑌𝑡−𝑞 .  

Let the formulation be: 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ⋯ + 𝛽𝑘𝑋𝑡−𝑘 + 𝜆1𝑌𝑡−1 + 𝜆2𝑌𝑡−2 + ⋯ + 𝜆𝑞𝑌𝑡−𝑞𝜀𝑡    (4.3) 
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All these models have the following common form: 

𝑌𝑡 = 𝛼0 + 𝛼1𝑋𝑡 + 𝛼2𝑌𝑡−1 + 𝜀𝑡 

4.4.2 Estimation 

The classical least-squares theory may not directly apply to models with stochastic 

explanatory variables and serial correlation.  

The classical OLS method is acceptable for estimating autoregressive models with 

independent errors when there is a sufficient number of observations, typically n > 15, as the 

asymptotic results are approximate due to the number of estimation periods and collinearity 

issues. 

In the case of autocorrelation of errors, there are different estimation methods, such as 

regression on first differences, the method of instrumental variables, and the maximum 

likelihood method. 

The estimation problem in autoregressive models is complex due to the likely serial 

correlation in errors. The Durbin-Watson d statistic may not detect first-order serial 

correlation in autoregressive models due to a bias against discovering it. However, Durbin has 

proposed a large-sample test called the h statistic, which can be used to determine first-order 

serial correlation in autoregressive models. This test is useful for assessing the error term in 

autoregressive models. 

ℎ = �̂�√
𝑛

1 − 𝑛𝜎
𝜆1

2  
 

where n is the sample size, 𝜎𝜆1

2  is the variance of the lagged 𝑌𝑡 (  𝑌𝑡−1) coefficient in Eq. (4.3)   

and �̂� is an estimate of the first-order serial correlation ρ. 

Durbin has shown that, for a large sample, under the null hypothesis that 𝜌 =  0, the h 

statistic of Eq. (4.3) follows the standard normal distribution. 

In practice one can estimate ρ as 

�̂� ≈ 1 −
𝑑𝑤

2
 

Where 𝑑𝑤 the Durban and Watson statistic. 

If |ℎ|  ≤  𝑡𝛼 2⁄ , we accept the null hypothesis H0 of independence of errors. (𝑡𝛼 2⁄  : value 

derived from the normal distribution for a two-tailed test at the α level). We note that if 

𝑛𝜎𝜆1

2 < 1, the "h" statistic cannot be calculated; in this case, we can use the Durbin-Watson 

statistic by including the doubt zone in the error autocorrelation zone. 

Example (4.5) 

An econometrician wishes to test the relationship between the official prices (OP) of a ton of 

coffee and the prices actually applied to exports (EP) by producing countries. He proposes to 

estimate the relationship: 
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𝑂𝑃𝑡 = 𝛼0 + 𝛼1𝐸𝑃𝑡 + 𝛼2𝑂𝑃𝑡−1 + 𝜀𝑡 

in which the official price is instantaneously dependent on the observed price and adjusts with 

a one-year lag to the official price. He has data for 16 years, presented in Table 1. 

t OP EP 

1 455.0 615.0 

2 500.0 665.0 

3 555.0 725.0 

4 611.0 795.0 

5 672.0 870.0 

6 748.5 970.0 

7 846.0 1095.0 

8 954.0 1235.0 

9 1090.0 1415.0 

10 1243.5 1615.0 

11 1390.0 1795.0 

12 1559.0 2015.0 

13 1781.0 2315.0 

14 2046.5 2660.0 

15 2311.0 2990.0 

16 2551.0 3280.0 

We ask: 1) to estimate the relationship and test for any potential autocorrelation of the errors; 

2) to correct the effects, if necessary. 

 

Solution  

The results of the estimation are as follows: 

𝑂�̂�𝑡 = −7.079 + 0.62𝐸𝑃𝑡 + 0.22𝑂𝑃𝑡−1 

                                          (SE)                       (0.026)        (0.037) 

                                            (t)                        (24.39)          (6.04) 

𝑅2 = 0.99; 𝑛 = 15;  𝐷𝑊 = 0.63 

 

The Durbin-Watson statistic suggests the presence of autocorrelation in the errors, which is 

confirmed by Durbin's "h". 

ℎ = �̂�√
𝑛

1 − 𝑛𝜎�̂�2

2  
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𝑛 = 15; 𝜎�̂�2

2 = (0.037)2 = 0.0013;   �̂� ≈ 1 −
𝑑𝑤

2
≈ 1 −

0.63

2
= 0.685 

ℎ = �̂�√
𝑛

1 − 𝑛𝜎
𝜆1

2  
= 0.685√

15

1 − 15 × 0.0013 
= 2.68 > 𝑡𝛼 2⁄ = 1.96 

So we reject the null hypothesis that 𝜌 = 0 and the conclusion is that there is (positive) 

autocorrelation. 

We proceed with the estimation of the first-difference model over 14 years because we lose an 

observation again when calculating the first differences of 𝑂𝑃𝑡−1. 

We obtain the following results : 

𝐷𝑂�̂�𝑡 = 2.89 + 0.60𝐷𝐸𝑃𝑡 + 0.24𝐷𝑂𝑃𝑡−1 

                                          (SE)                    (0.019)        (0.024) 

                                          (t)                       (32.23)         (9.98) 

𝑅2 = 0.99; 𝑛 = 14;  𝐷𝑊 = 1.78 

We observe that the differences between the regression coefficients are quite small for 𝛼1 

(0.62 and 0.60) as well as for 𝛼2 (0.22 and 0.24); we can consider the results obtained from 

the first regression as valid. 

However, for educational purposes, we will use the method of correcting autocorrelation of 

errors. The estimated model, according to the Hildreth-Lu method, is then: 

𝑂�̂�𝑡 = −2.77 + 0.61𝐸𝑃𝑡 + 0.23𝑂𝑃𝑡−1 

                                            (t)                         (57.9)         (15.5) 

𝑅2 = 0.99; 𝑛 = 14;  𝐷𝑊 = 2.08 

 

 

 

 

 

 



 CHAPTER 4 : DYNAMIC ECONOMETRIC MODELS 

 
 

71 
 

 

Exercise series no 04 

Exercise 01 

Let us the following models: 

𝑌𝑡 = 8.37 + 0.17𝑋𝑡 

𝑌𝑡 = 8.37 + 0.111𝑋𝑡 + 0.064𝑋𝑡−1 

𝑌𝑡 = 8.37 + 0.109𝑋𝑡 + 0.071𝑋𝑡−1 − 0.055𝑋𝑡−2 

𝑌𝑡 = 8.37 + 0.108 + 0.063𝑋𝑡−1 + 0.022𝑋𝑡−2 − 0.020𝑋𝑡−3 

Use the Ad-hoc method to choose is the best model. 

 Exercise 02 

The data in the table below represent the Planned capital expenditure (Y) and the sales (X). 

T Y X 

1 10 20 

2 9 19 

3 10 21 

4 11 23 

5 13 25 

6 20 27 

7 24 30 

8 19 32 

9 24 34 

10 26 40 

Estimate the Y regression equation on X using the methods of Koyk, Adaptive Expectation, 

partial adjustment and Almon. 
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